stolz - teichner程序中的电源操作

T. Barthel, Daniel Berwick-Evans, Nathaniel J. Stapleton
{"title":"stolz - teichner程序中的电源操作","authors":"T. Barthel, Daniel Berwick-Evans, Nathaniel J. Stapleton","doi":"10.2140/gt.2022.26.1773","DOIUrl":null,"url":null,"abstract":"The Stolz--Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. In this paper, we extend this connection by developing a theory of geometric power operations for geometric field theories restricted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant $K$-theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"68 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Power operations in the Stolz–Teichner\\nprogram\",\"authors\":\"T. Barthel, Daniel Berwick-Evans, Nathaniel J. Stapleton\",\"doi\":\"10.2140/gt.2022.26.1773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stolz--Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. In this paper, we extend this connection by developing a theory of geometric power operations for geometric field theories restricted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant $K$-theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"68 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Stolz—Teichner方案提出了几何场理论与某些上同调理论之间的深层联系。在本文中,我们通过发展一个限制于闭合边界的几何场理论的几何幂运算理论,扩展了这一联系。这些运算满足的关系类似于它们的同调对应物所表现出的关系。在复变等变K理论中,我们还提供了用通常的幂运算来识别几何定义运算的计算工具。进一步,我们用几何方法构造了复等变椭圆上同调的幂运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power operations in the Stolz–Teichner program
The Stolz--Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. In this paper, we extend this connection by developing a theory of geometric power operations for geometric field theories restricted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant $K$-theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信