基于跳越法的移动机械臂最优路径

B. Matebese, D. Withey, M. Banda
{"title":"基于跳越法的移动机械臂最优路径","authors":"B. Matebese, D. Withey, M. Banda","doi":"10.1109/ROBOMECH.2019.8704789","DOIUrl":null,"url":null,"abstract":"This paper deals with finding optimal paths for a mobile manipulator in the presence of obstacles. The motion planning of the robot kinematic system is formulated as an optimal control problem. Applying Pontryagin’s minimum principle, indirect conditions of optimality are derived for the optimal motion planning problem and solved numerically using the Leapfrog method. Simulation results for the mobile manipulator are presented to demonstrate the effectiveness of the proposed method.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"39 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Paths for a Mobile Manipulator using the Leapfrog Method\",\"authors\":\"B. Matebese, D. Withey, M. Banda\",\"doi\":\"10.1109/ROBOMECH.2019.8704789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with finding optimal paths for a mobile manipulator in the presence of obstacles. The motion planning of the robot kinematic system is formulated as an optimal control problem. Applying Pontryagin’s minimum principle, indirect conditions of optimality are derived for the optimal motion planning problem and solved numerically using the Leapfrog method. Simulation results for the mobile manipulator are presented to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":344332,\"journal\":{\"name\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"volume\":\"39 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOMECH.2019.8704789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了移动机械臂在存在障碍物情况下的最优路径求解问题。将机器人运动系统的运动规划表述为最优控制问题。应用庞特里亚金最小值原理,导出了最优运动规划问题的间接最优条件,并采用Leapfrog方法进行了数值求解。最后给出了移动机械手的仿真结果,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Paths for a Mobile Manipulator using the Leapfrog Method
This paper deals with finding optimal paths for a mobile manipulator in the presence of obstacles. The motion planning of the robot kinematic system is formulated as an optimal control problem. Applying Pontryagin’s minimum principle, indirect conditions of optimality are derived for the optimal motion planning problem and solved numerically using the Leapfrog method. Simulation results for the mobile manipulator are presented to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信