…毕竟感知器比它的名声要好!

A. Faessler
{"title":"…毕竟感知器比它的名声要好!","authors":"A. Faessler","doi":"10.1109/ISNFS.1996.603831","DOIUrl":null,"url":null,"abstract":"A large class of functions (in one or more variables) can be approximated by a, generally, multilayer feed-forward network, in which only the weights of the last layer need to be trained. All others can be selected appropriately dependent upon the desired accuracy with which the training examples are to be approximated, but independently of the examples. Thus only a perceptron remains to be trained.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"4 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"...and the perceptron is better than its reputation after all!\",\"authors\":\"A. Faessler\",\"doi\":\"10.1109/ISNFS.1996.603831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large class of functions (in one or more variables) can be approximated by a, generally, multilayer feed-forward network, in which only the weights of the last layer need to be trained. All others can be selected appropriately dependent upon the desired accuracy with which the training examples are to be approximated, but independently of the examples. Thus only a perceptron remains to be trained.\",\"PeriodicalId\":187481,\"journal\":{\"name\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"volume\":\"4 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNFS.1996.603831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个大的函数类(在一个或多个变量中)通常可以用多层前馈网络来近似,其中只需要训练最后一层的权重。所有其他的都可以适当地选择,这取决于要近似的训练样例的所需精度,但与样例无关。因此,只剩下一个感知器有待训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
...and the perceptron is better than its reputation after all!
A large class of functions (in one or more variables) can be approximated by a, generally, multilayer feed-forward network, in which only the weights of the last layer need to be trained. All others can be selected appropriately dependent upon the desired accuracy with which the training examples are to be approximated, but independently of the examples. Thus only a perceptron remains to be trained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信