基于自适应相关向量机的层析成像传感器自动重构

Daniel Ospina Acero, S. Chowdhury, F. Teixeira, Q. Marashdeh
{"title":"基于自适应相关向量机的层析成像传感器自动重构","authors":"Daniel Ospina Acero, S. Chowdhury, F. Teixeira, Q. Marashdeh","doi":"10.23919/USNC-URSI-NRSM.2019.8713113","DOIUrl":null,"url":null,"abstract":"We apply the Adaptive Relevance Vector Machine to automatically select the measurement set in a tomographic setting, from all the arrangements or combinations of the measuring elements, that yield the lowest level of uncertainty about the estimated results, while maintaining good image reconstruction. To illustrate the proposed method, we present simulation results derived from Electrical Capacitance Tomography.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"32 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Sensor Reconfiguration based on Adaptive Relevance Vector Machine for Uncertainty Reduction in Tomography Imaging\",\"authors\":\"Daniel Ospina Acero, S. Chowdhury, F. Teixeira, Q. Marashdeh\",\"doi\":\"10.23919/USNC-URSI-NRSM.2019.8713113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the Adaptive Relevance Vector Machine to automatically select the measurement set in a tomographic setting, from all the arrangements or combinations of the measuring elements, that yield the lowest level of uncertainty about the estimated results, while maintaining good image reconstruction. To illustrate the proposed method, we present simulation results derived from Electrical Capacitance Tomography.\",\"PeriodicalId\":142320,\"journal\":{\"name\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"32 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们应用自适应相关向量机从所有测量元素的排列或组合中自动选择层析成像设置中的测量集,从而产生对估计结果的最低不确定性,同时保持良好的图像重建。为了说明所提出的方法,我们给出了电容层析成像的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Sensor Reconfiguration based on Adaptive Relevance Vector Machine for Uncertainty Reduction in Tomography Imaging
We apply the Adaptive Relevance Vector Machine to automatically select the measurement set in a tomographic setting, from all the arrangements or combinations of the measuring elements, that yield the lowest level of uncertainty about the estimated results, while maintaining good image reconstruction. To illustrate the proposed method, we present simulation results derived from Electrical Capacitance Tomography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信