多模态生物识别中基于特征的二元特征融合

Wen-Shiung Chen, Ren-He Jeng
{"title":"多模态生物识别中基于特征的二元特征融合","authors":"Wen-Shiung Chen, Ren-He Jeng","doi":"10.1504/ijbm.2020.10030177","DOIUrl":null,"url":null,"abstract":"In this paper, a quantised eigen analysis (QEA) for the extracted features is proposed and an associated eigen-based binary feature amalgamation (EBFA) based on QEA is developed for feature fusion in multimodal biometrics. As opposed to feature combination, EBFA projects heterogeneous features onto the projection kernel and uses only the sign parts to encode the features as bit strings to maximise its expression rather than directly combine them. Thus, the feature codes can be simply concatenated or compared by XOR bit-wise operation into a serial or parallel amalgamated feature vector. To evaluate the performance of EBFA, a series of experiments are performed on multiple biometric modalities, including face, palm-print and iris. The experimental results show that the proposed binary feature amalgamation scheme at feature-level is superior to some other feature fusion methods and score-level methods in terms of multimodal recognition accuracy performance.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"32 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigen-based binary feature amalgamation in multimodal biometrics\",\"authors\":\"Wen-Shiung Chen, Ren-He Jeng\",\"doi\":\"10.1504/ijbm.2020.10030177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a quantised eigen analysis (QEA) for the extracted features is proposed and an associated eigen-based binary feature amalgamation (EBFA) based on QEA is developed for feature fusion in multimodal biometrics. As opposed to feature combination, EBFA projects heterogeneous features onto the projection kernel and uses only the sign parts to encode the features as bit strings to maximise its expression rather than directly combine them. Thus, the feature codes can be simply concatenated or compared by XOR bit-wise operation into a serial or parallel amalgamated feature vector. To evaluate the performance of EBFA, a series of experiments are performed on multiple biometric modalities, including face, palm-print and iris. The experimental results show that the proposed binary feature amalgamation scheme at feature-level is superior to some other feature fusion methods and score-level methods in terms of multimodal recognition accuracy performance.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"32 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbm.2020.10030177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10030177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对提取的特征进行了量化特征分析(QEA),并提出了一种基于QEA的相关特征二元特征合并(EBFA)方法,用于多模态生物识别中的特征融合。与特征组合相反,EBFA将异构特征投射到投影核上,并仅使用符号部分将特征编码为位串以最大化其表达,而不是直接组合它们。因此,特征码可以简单地通过异或位操作连接或比较成串行或并行合并特征向量。为了评估EBFA的性能,在多种生物识别模式下进行了一系列实验,包括面部、手印和虹膜。实验结果表明,所提出的特征级二元特征合并方案在多模态识别精度方面优于其他特征融合方法和分数级方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigen-based binary feature amalgamation in multimodal biometrics
In this paper, a quantised eigen analysis (QEA) for the extracted features is proposed and an associated eigen-based binary feature amalgamation (EBFA) based on QEA is developed for feature fusion in multimodal biometrics. As opposed to feature combination, EBFA projects heterogeneous features onto the projection kernel and uses only the sign parts to encode the features as bit strings to maximise its expression rather than directly combine them. Thus, the feature codes can be simply concatenated or compared by XOR bit-wise operation into a serial or parallel amalgamated feature vector. To evaluate the performance of EBFA, a series of experiments are performed on multiple biometric modalities, including face, palm-print and iris. The experimental results show that the proposed binary feature amalgamation scheme at feature-level is superior to some other feature fusion methods and score-level methods in terms of multimodal recognition accuracy performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信