关键词融合指针生成器网络策略文本标题摘要

Ziyin Gu, Li Chen, Qing-jin Zhu, Lingbo Li, Zelin Zhang, Xin Zhou
{"title":"关键词融合指针生成器网络策略文本标题摘要","authors":"Ziyin Gu, Li Chen, Qing-jin Zhu, Lingbo Li, Zelin Zhang, Xin Zhou","doi":"10.1109/ICISCAE52414.2021.9590673","DOIUrl":null,"url":null,"abstract":"In this paper, we study the electricity price policy text title summarization problem. Comparing with conventional summarization tasks, title summarization of policy text has an extra characteristic. Policy texts always contain many professional keywords. In order to retain the main information in title summarization as much as possible, we propose keyword-fusion pointer-generator network with additional consideration of keywords of policy text. We incorporate keywords information from the original policy texts into our model by a new attention mechanism called keyword-fusion attention mechanism so that keywords can be generated in the title. What's more, our keyword-fusion pointer-generator network contains a more useful coverage vector using exponentially weighted averages method in order to solve the problem of repetition. Experimental results show that our model outperforms the other baselines.","PeriodicalId":121049,"journal":{"name":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"18 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keyword-fusion Pointer-Generator Network for Policy Text Title Summarization\",\"authors\":\"Ziyin Gu, Li Chen, Qing-jin Zhu, Lingbo Li, Zelin Zhang, Xin Zhou\",\"doi\":\"10.1109/ICISCAE52414.2021.9590673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the electricity price policy text title summarization problem. Comparing with conventional summarization tasks, title summarization of policy text has an extra characteristic. Policy texts always contain many professional keywords. In order to retain the main information in title summarization as much as possible, we propose keyword-fusion pointer-generator network with additional consideration of keywords of policy text. We incorporate keywords information from the original policy texts into our model by a new attention mechanism called keyword-fusion attention mechanism so that keywords can be generated in the title. What's more, our keyword-fusion pointer-generator network contains a more useful coverage vector using exponentially weighted averages method in order to solve the problem of repetition. Experimental results show that our model outperforms the other baselines.\",\"PeriodicalId\":121049,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"volume\":\"18 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCAE52414.2021.9590673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE52414.2021.9590673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究电价政策文本标题的摘要问题。与传统的摘要任务相比,政策文本的标题摘要具有额外的特点。政策文本总是包含许多专业关键词。为了尽可能保留标题摘要中的主要信息,我们提出了关键词融合指针生成器网络,并考虑了政策文本的关键词。我们通过一种新的关注机制——关键词融合关注机制,将原政策文本中的关键词信息整合到我们的模型中,从而在标题中生成关键词。此外,我们的关键字融合指针生成器网络使用指数加权平均方法包含了一个更有用的覆盖向量,以解决重复问题。实验结果表明,该模型的性能优于其他基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keyword-fusion Pointer-Generator Network for Policy Text Title Summarization
In this paper, we study the electricity price policy text title summarization problem. Comparing with conventional summarization tasks, title summarization of policy text has an extra characteristic. Policy texts always contain many professional keywords. In order to retain the main information in title summarization as much as possible, we propose keyword-fusion pointer-generator network with additional consideration of keywords of policy text. We incorporate keywords information from the original policy texts into our model by a new attention mechanism called keyword-fusion attention mechanism so that keywords can be generated in the title. What's more, our keyword-fusion pointer-generator network contains a more useful coverage vector using exponentially weighted averages method in order to solve the problem of repetition. Experimental results show that our model outperforms the other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信