利用正交函数的双线性系统分散控制综合

M. S. Attia, Badii Ayadi, N. Braiek
{"title":"利用正交函数的双线性系统分散控制综合","authors":"M. S. Attia, Badii Ayadi, N. Braiek","doi":"10.2478/s13531-013-0146-1","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the development of a new technique of decentralized control for bilinear systems, through using orthogonal functions. The use of this tool allows the conversion of differential state equations to a set of algebraic ones by projecting the system input and output variables into orthogonal functions basis and then using the operational properties of these orthogonal functions. The optimum decentralized control parameters for the interconnected bilinear system can then be determined through comparison of the response behaviour with the chosen reference model.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"11 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Decentralized control synthesis for bilinear systems using orthogonal functions\",\"authors\":\"M. S. Attia, Badii Ayadi, N. Braiek\",\"doi\":\"10.2478/s13531-013-0146-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the development of a new technique of decentralized control for bilinear systems, through using orthogonal functions. The use of this tool allows the conversion of differential state equations to a set of algebraic ones by projecting the system input and output variables into orthogonal functions basis and then using the operational properties of these orthogonal functions. The optimum decentralized control parameters for the interconnected bilinear system can then be determined through comparison of the response behaviour with the chosen reference model.\",\"PeriodicalId\":407983,\"journal\":{\"name\":\"Central European Journal of Engineering\",\"volume\":\"11 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s13531-013-0146-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0146-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种利用正交函数对双线性系统进行分散控制的新方法。该工具的使用允许将微分状态方程转换为一组代数方程,方法是将系统输入和输出变量投影到正交函数基中,然后利用这些正交函数的运算性质。然后可以通过与所选参考模型的响应行为比较来确定互连双线性系统的最优分散控制参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized control synthesis for bilinear systems using orthogonal functions
In this paper, we propose the development of a new technique of decentralized control for bilinear systems, through using orthogonal functions. The use of this tool allows the conversion of differential state equations to a set of algebraic ones by projecting the system input and output variables into orthogonal functions basis and then using the operational properties of these orthogonal functions. The optimum decentralized control parameters for the interconnected bilinear system can then be determined through comparison of the response behaviour with the chosen reference model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信