Charly Castes, E. Agullo, Olivier Aumage, Emmanuelle Saillard
{"title":"用于共享内存体系结构的基于顺序任务的代码的分散顺序执行","authors":"Charly Castes, E. Agullo, Olivier Aumage, Emmanuelle Saillard","doi":"10.1109/IPDPSW55747.2022.00095","DOIUrl":null,"url":null,"abstract":"The hardware complexity of modern machines makes the design of adequate programming models crucial for jointly ensuring performance, portability, and productivity in high-performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hardware architecture in a productive and portable manner, and let a third party software layer -the runtime system- deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness. Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized in-order execution of a sequential task-based code for shared-memory architectures\",\"authors\":\"Charly Castes, E. Agullo, Olivier Aumage, Emmanuelle Saillard\",\"doi\":\"10.1109/IPDPSW55747.2022.00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hardware complexity of modern machines makes the design of adequate programming models crucial for jointly ensuring performance, portability, and productivity in high-performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hardware architecture in a productive and portable manner, and let a third party software layer -the runtime system- deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness. Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decentralized in-order execution of a sequential task-based code for shared-memory architectures
The hardware complexity of modern machines makes the design of adequate programming models crucial for jointly ensuring performance, portability, and productivity in high-performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hardware architecture in a productive and portable manner, and let a third party software layer -the runtime system- deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness. Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.