使用模式匹配的数字乳房x光片中乳房肿块的自动检测

M. Eltoukhy, I. Faye, B. Samir
{"title":"使用模式匹配的数字乳房x光片中乳房肿块的自动检测","authors":"M. Eltoukhy, I. Faye, B. Samir","doi":"10.1109/IECBES.2010.5742202","DOIUrl":null,"url":null,"abstract":"The work in this paper focuses on the automatic detection of masses in digital mammograms. The proposed system consists of two main stages; the first stage is the breast segmentation to remove the background and labels. The second stage is to determine the masses region. The proposed method utilizes the correlation between a typical mass region and the mammogram image in order to determine and extract the suspicious region in the tested image. The system is developed and evaluated with 116 mammogram images from the mammographic image analysis society (MIAS) Dataset. The results show that the proposed algorithm has a sensitivity of 89.30% for mass detection, and the classification accuracy rate reach 94.66%.","PeriodicalId":241343,"journal":{"name":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"37 11-12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic detection of breast masses in digital mammograms using pattern matching\",\"authors\":\"M. Eltoukhy, I. Faye, B. Samir\",\"doi\":\"10.1109/IECBES.2010.5742202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work in this paper focuses on the automatic detection of masses in digital mammograms. The proposed system consists of two main stages; the first stage is the breast segmentation to remove the background and labels. The second stage is to determine the masses region. The proposed method utilizes the correlation between a typical mass region and the mammogram image in order to determine and extract the suspicious region in the tested image. The system is developed and evaluated with 116 mammogram images from the mammographic image analysis society (MIAS) Dataset. The results show that the proposed algorithm has a sensitivity of 89.30% for mass detection, and the classification accuracy rate reach 94.66%.\",\"PeriodicalId\":241343,\"journal\":{\"name\":\"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"37 11-12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES.2010.5742202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES.2010.5742202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文的工作重点是数字乳房x光片中肿块的自动检测。拟议的制度包括两个主要阶段;第一阶段是乳房分割,去除背景和标签。第二阶段是确定质量区域。该方法利用典型肿块区域与乳房x线图像之间的相关性来确定和提取被测图像中的可疑区域。该系统的开发和评估使用了来自乳腺摄影图像分析协会(MIAS)数据集的116张乳房x线照片。结果表明,该算法对质量检测的灵敏度为89.30%,分类准确率达到94.66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of breast masses in digital mammograms using pattern matching
The work in this paper focuses on the automatic detection of masses in digital mammograms. The proposed system consists of two main stages; the first stage is the breast segmentation to remove the background and labels. The second stage is to determine the masses region. The proposed method utilizes the correlation between a typical mass region and the mammogram image in order to determine and extract the suspicious region in the tested image. The system is developed and evaluated with 116 mammogram images from the mammographic image analysis society (MIAS) Dataset. The results show that the proposed algorithm has a sensitivity of 89.30% for mass detection, and the classification accuracy rate reach 94.66%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信