使用目标语字素和音素的机器音译:多引擎音译方法

Jong-Hoon Oh, Kiyotaka Uchimoto, Kentaro Torisawa
{"title":"使用目标语字素和音素的机器音译:多引擎音译方法","authors":"Jong-Hoon Oh, Kiyotaka Uchimoto, Kentaro Torisawa","doi":"10.3115/1699705.1699714","DOIUrl":null,"url":null,"abstract":"This paper describes our approach to \"NEWS 2009 Machine Transliteration Shared Task.\" We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in \"NEWS 2009 Machine Transliteration Shared Task.\" The official results of our standard runs were ranked the best for four language pairs and the second best for three language pairs.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"35 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach\",\"authors\":\"Jong-Hoon Oh, Kiyotaka Uchimoto, Kentaro Torisawa\",\"doi\":\"10.3115/1699705.1699714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our approach to \\\"NEWS 2009 Machine Transliteration Shared Task.\\\" We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in \\\"NEWS 2009 Machine Transliteration Shared Task.\\\" The official results of our standard runs were ranked the best for four language pairs and the second best for three language pairs.\",\"PeriodicalId\":262513,\"journal\":{\"name\":\"NEWS@IJCNLP\",\"volume\":\"35 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEWS@IJCNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1699705.1699714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文描述了我们实现“NEWS 2009机器音译共享任务”的方法。我们基于两种音译模型和三种机器学习算法的不同组合构建了多个音译引擎。然后,使用重新排序功能将这些音译引擎的输出组合起来。我们的方法应用于“NEWS 2009机器音译共享任务”中的所有语言对。我们标准测试的官方结果是四种语言对排名第一,三种语言对排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach
This paper describes our approach to "NEWS 2009 Machine Transliteration Shared Task." We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in "NEWS 2009 Machine Transliteration Shared Task." The official results of our standard runs were ranked the best for four language pairs and the second best for three language pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信