谱划分:特征向量越多越好

C. Alpert, So-Zen Yao
{"title":"谱划分:特征向量越多越好","authors":"C. Alpert, So-Zen Yao","doi":"10.1145/217474.217529","DOIUrl":null,"url":null,"abstract":"A spectral partitioning method uses the eigenvectors of a graph's adjacency or Laplacian matrix to construct a geometric representation (e.g., a linear ordering) which is then heuristically partitioned. We map each graph vertex to a vector in d-dimensional space, where d is the number of eigenvectors, such that these vectors constitute an instance of the vector partitioning problem. When all the eigenvectors are used, graph partitioning exactly reduces to vector partitioning. This result motivates a simple ordering heuristic that can be used to yield high-quality 2-way and multi-way partitionings. Our experiments suggest the vector partitioning perspective opens the door to new and effective heuristics.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"184 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"257","resultStr":"{\"title\":\"Spectral Partitioning: The More Eigenvectors, The Better\",\"authors\":\"C. Alpert, So-Zen Yao\",\"doi\":\"10.1145/217474.217529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spectral partitioning method uses the eigenvectors of a graph's adjacency or Laplacian matrix to construct a geometric representation (e.g., a linear ordering) which is then heuristically partitioned. We map each graph vertex to a vector in d-dimensional space, where d is the number of eigenvectors, such that these vectors constitute an instance of the vector partitioning problem. When all the eigenvectors are used, graph partitioning exactly reduces to vector partitioning. This result motivates a simple ordering heuristic that can be used to yield high-quality 2-way and multi-way partitionings. Our experiments suggest the vector partitioning perspective opens the door to new and effective heuristics.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"184 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"257\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 257

摘要

谱划分方法使用图的邻接矩阵或拉普拉斯矩阵的特征向量来构造几何表示(例如,线性排序),然后启发式划分。我们将每个图顶点映射到d维空间中的一个向量,其中d是特征向量的个数,使得这些向量构成向量划分问题的一个实例。当使用所有特征向量时,图的划分精确地简化为向量的划分。这个结果激发了一种简单的排序启发式,可用于产生高质量的双向和多路分区。我们的实验表明,向量划分视角打开了新的和有效的启发式的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Partitioning: The More Eigenvectors, The Better
A spectral partitioning method uses the eigenvectors of a graph's adjacency or Laplacian matrix to construct a geometric representation (e.g., a linear ordering) which is then heuristically partitioned. We map each graph vertex to a vector in d-dimensional space, where d is the number of eigenvectors, such that these vectors constitute an instance of the vector partitioning problem. When all the eigenvectors are used, graph partitioning exactly reduces to vector partitioning. This result motivates a simple ordering heuristic that can be used to yield high-quality 2-way and multi-way partitionings. Our experiments suggest the vector partitioning perspective opens the door to new and effective heuristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信