单相感应电动机的神经逆最优控制

J. P. Vega, E. Sánchez, Larbi Djilali, A. Loukianov
{"title":"单相感应电动机的神经逆最优控制","authors":"J. P. Vega, E. Sánchez, Larbi Djilali, A. Loukianov","doi":"10.1109/CoDIT55151.2022.9804066","DOIUrl":null,"url":null,"abstract":"One of the most used electrical machines in the industry and domestic applications are the Single-Phase Induction Motor (SPIM), due to its low cost and low-price regarding maintenance. In this paper the Neural Inverse Optimal Control (NIOC) based Recurrent High Order Neural Network (RHONN) identifier is developed to control the SPIM flux and mechanical speed. The proposed neural identifier is on-line trained using the Extended Kalman Filter (EKF) based algorithm, which helps to obtain adequate SPIM model even in the presence of disturbances. To synthesize the NIOC, a Control Lyapunov Function (CLF) is selected as a cost function to be optimized. To illustrate the effectiveness of the proposed control scheme, simulations results considering time-varying references tracking and robustness in presence of parameter variations are presented and compared with conventional controllers.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"18 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Inverse Optimal Control of Single-Phase Induction Motors\",\"authors\":\"J. P. Vega, E. Sánchez, Larbi Djilali, A. Loukianov\",\"doi\":\"10.1109/CoDIT55151.2022.9804066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most used electrical machines in the industry and domestic applications are the Single-Phase Induction Motor (SPIM), due to its low cost and low-price regarding maintenance. In this paper the Neural Inverse Optimal Control (NIOC) based Recurrent High Order Neural Network (RHONN) identifier is developed to control the SPIM flux and mechanical speed. The proposed neural identifier is on-line trained using the Extended Kalman Filter (EKF) based algorithm, which helps to obtain adequate SPIM model even in the presence of disturbances. To synthesize the NIOC, a Control Lyapunov Function (CLF) is selected as a cost function to be optimized. To illustrate the effectiveness of the proposed control scheme, simulations results considering time-varying references tracking and robustness in presence of parameter variations are presented and compared with conventional controllers.\",\"PeriodicalId\":185510,\"journal\":{\"name\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"18 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT55151.2022.9804066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9804066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业和家庭应用中使用最多的电机之一是单相感应电动机(SPIM),由于其低成本和低维护价格。本文提出了一种基于递归高阶神经网络辨识器的神经逆最优控制(NIOC)方法来控制SPIM的磁通和机械速度。采用基于扩展卡尔曼滤波(EKF)的算法对神经辨识器进行在线训练,即使在存在干扰的情况下也能获得足够的SPIM模型。为了合成NIOC,选择控制李雅普诺夫函数(Control Lyapunov Function, CLF)作为代价函数进行优化。为了说明所提出的控制方案的有效性,给出了考虑时变参考跟踪和参数变化下鲁棒性的仿真结果,并与传统控制器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Inverse Optimal Control of Single-Phase Induction Motors
One of the most used electrical machines in the industry and domestic applications are the Single-Phase Induction Motor (SPIM), due to its low cost and low-price regarding maintenance. In this paper the Neural Inverse Optimal Control (NIOC) based Recurrent High Order Neural Network (RHONN) identifier is developed to control the SPIM flux and mechanical speed. The proposed neural identifier is on-line trained using the Extended Kalman Filter (EKF) based algorithm, which helps to obtain adequate SPIM model even in the presence of disturbances. To synthesize the NIOC, a Control Lyapunov Function (CLF) is selected as a cost function to be optimized. To illustrate the effectiveness of the proposed control scheme, simulations results considering time-varying references tracking and robustness in presence of parameter variations are presented and compared with conventional controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信