{"title":"平衡网络搜索的延迟和质量","authors":"Liang Zhou, K. Ramakrishnan","doi":"10.1109/nas51552.2021.9605375","DOIUrl":null,"url":null,"abstract":"Selecting the right time budget for a search query is challenging because a proper balance between the search latency, quality and efficiency has to be maintained. State-of-the-art approaches leverage a centralized sample index at the aggregator to select the Index Serving Nodes (ISNs) to maintain quality and responsiveness. In this paper, we propose Cottage, a coordinated framework between the aggregator and ISNs for latency and quality optimization in web search. Cottage has two separate neural network models at each ISN to predict the quality contribution and latency, respectively. Then, these prediction results are sent back to the aggregator for latency and quality optimizations. The key task is integration of the predictions at the aggregator in determining an optimal dynamic time budget for identifying slow and low quality ISNs to improve latency and search efficiency. Our experiments on the Solr search engine prove that Cottage can reduce the average query latency by 54% and achieve a good P@10 search quality of 0.947.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Latency and Quality in Web Search\",\"authors\":\"Liang Zhou, K. Ramakrishnan\",\"doi\":\"10.1109/nas51552.2021.9605375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting the right time budget for a search query is challenging because a proper balance between the search latency, quality and efficiency has to be maintained. State-of-the-art approaches leverage a centralized sample index at the aggregator to select the Index Serving Nodes (ISNs) to maintain quality and responsiveness. In this paper, we propose Cottage, a coordinated framework between the aggregator and ISNs for latency and quality optimization in web search. Cottage has two separate neural network models at each ISN to predict the quality contribution and latency, respectively. Then, these prediction results are sent back to the aggregator for latency and quality optimizations. The key task is integration of the predictions at the aggregator in determining an optimal dynamic time budget for identifying slow and low quality ISNs to improve latency and search efficiency. Our experiments on the Solr search engine prove that Cottage can reduce the average query latency by 54% and achieve a good P@10 search quality of 0.947.\",\"PeriodicalId\":135930,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/nas51552.2021.9605375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为搜索查询选择合适的时间预算是一项挑战,因为必须在搜索延迟、质量和效率之间保持适当的平衡。最先进的方法利用聚合器上的集中式样本索引来选择索引服务节点(index service Nodes, isn),以保持质量和响应能力。在本文中,我们提出了Cottage,这是一个聚合器和ISNs之间的协调框架,用于网络搜索中的延迟和质量优化。Cottage在每个ISN上都有两个独立的神经网络模型,分别预测质量贡献和延迟。然后,这些预测结果被发送回聚合器进行延迟和质量优化。关键任务是在聚合器中集成预测,确定最优动态时间预算,用于识别缓慢和低质量的isn,以提高延迟和搜索效率。我们在Solr搜索引擎上的实验证明,Cottage可以将平均查询延迟减少54%,并获得0.947的良好P@10搜索质量。
Selecting the right time budget for a search query is challenging because a proper balance between the search latency, quality and efficiency has to be maintained. State-of-the-art approaches leverage a centralized sample index at the aggregator to select the Index Serving Nodes (ISNs) to maintain quality and responsiveness. In this paper, we propose Cottage, a coordinated framework between the aggregator and ISNs for latency and quality optimization in web search. Cottage has two separate neural network models at each ISN to predict the quality contribution and latency, respectively. Then, these prediction results are sent back to the aggregator for latency and quality optimizations. The key task is integration of the predictions at the aggregator in determining an optimal dynamic time budget for identifying slow and low quality ISNs to improve latency and search efficiency. Our experiments on the Solr search engine prove that Cottage can reduce the average query latency by 54% and achieve a good P@10 search quality of 0.947.