基于hypervolume的多目标排序与选择

J. Branke, Wen Zhang, Yang Tao
{"title":"基于hypervolume的多目标排序与选择","authors":"J. Branke, Wen Zhang, Yang Tao","doi":"10.1109/WSC.2016.7822148","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a myopic ranking and selection procedures for the multi-objective case. Whereas most publications for multi-objective problems aim at maximizing the probability of correctly selecting all Pareto optimal solutions, we suggest minimizing the difference in hypervolume between the observed means of the perceived Pareto front and the true Pareto front as a new performance measure. We argue that this hypervolume difference is often more relevant for a decision maker. Empirical tests show that the proposed method performs well with respect to the stated hypervolume objective.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"88 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Multio-bjective ranking and selection based on hypervolume\",\"authors\":\"J. Branke, Wen Zhang, Yang Tao\",\"doi\":\"10.1109/WSC.2016.7822148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a myopic ranking and selection procedures for the multi-objective case. Whereas most publications for multi-objective problems aim at maximizing the probability of correctly selecting all Pareto optimal solutions, we suggest minimizing the difference in hypervolume between the observed means of the perceived Pareto front and the true Pareto front as a new performance measure. We argue that this hypervolume difference is often more relevant for a decision maker. Empirical tests show that the proposed method performs well with respect to the stated hypervolume objective.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"88 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文针对多目标案例,提出了一种近视眼排序和选择程序。鉴于大多数关于多目标问题的出版物旨在最大化正确选择所有帕累托最优解的概率,我们建议将感知帕累托前沿和真实帕累托前沿的观测均值之间的超容积差最小化作为一种新的性能度量。我们认为,这种超大容量差异通常与决策者更相关。经验测试表明,所提出的方法相对于所述的超大容量目标表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multio-bjective ranking and selection based on hypervolume
In this paper, we propose a myopic ranking and selection procedures for the multi-objective case. Whereas most publications for multi-objective problems aim at maximizing the probability of correctly selecting all Pareto optimal solutions, we suggest minimizing the difference in hypervolume between the observed means of the perceived Pareto front and the true Pareto front as a new performance measure. We argue that this hypervolume difference is often more relevant for a decision maker. Empirical tests show that the proposed method performs well with respect to the stated hypervolume objective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信