Cheon算法的实验结果

T. Izu, M. Takenaka, Masaya Yasuda
{"title":"Cheon算法的实验结果","authors":"T. Izu, M. Takenaka, Masaya Yasuda","doi":"10.1109/ARES.2010.55","DOIUrl":null,"url":null,"abstract":"The discrete logarithm problem (DLP) is one of the familiar problem on which cryptographic schemes rely. In 2006, Cheon proposed an algorithm for solving DLP with auxiliary input which works better than conventional algorithms. This paper firstly reports experimental results on Cheon's algorithm for DLP on a super singular elliptic curve defined over $GF(3^{127})$, which is used for efficient pairing computation in practice. About 8 hours and 34 MByte data-base are required for the 1st step of Cheon's algorithm, and about 6 hours and 23 MByte data-base for the 2nd step. In total, about 14 hours are required for solving the problem. Our results imply that the security evaluation from a viewpoint of Cheon's algorithm is crucial.","PeriodicalId":360339,"journal":{"name":"2010 International Conference on Availability, Reliability and Security","volume":"407 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental Results on Cheon's Algorithm\",\"authors\":\"T. Izu, M. Takenaka, Masaya Yasuda\",\"doi\":\"10.1109/ARES.2010.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete logarithm problem (DLP) is one of the familiar problem on which cryptographic schemes rely. In 2006, Cheon proposed an algorithm for solving DLP with auxiliary input which works better than conventional algorithms. This paper firstly reports experimental results on Cheon's algorithm for DLP on a super singular elliptic curve defined over $GF(3^{127})$, which is used for efficient pairing computation in practice. About 8 hours and 34 MByte data-base are required for the 1st step of Cheon's algorithm, and about 6 hours and 23 MByte data-base for the 2nd step. In total, about 14 hours are required for solving the problem. Our results imply that the security evaluation from a viewpoint of Cheon's algorithm is crucial.\",\"PeriodicalId\":360339,\"journal\":{\"name\":\"2010 International Conference on Availability, Reliability and Security\",\"volume\":\"407 17\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2010.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

离散对数问题(DLP)是密码方案所依赖的常见问题之一。2006年,千教授提出了一种比传统算法更有效的辅助输入求解DLP的算法。本文首次报道了在$GF(3^{127})$上定义的超奇异椭圆曲线上的Cheon的DLP算法的实验结果,该算法在实践中用于高效的配对计算。Cheon的算法第一步需要大约8小时和34mbyte的数据库,第二步需要大约6小时和23mbyte的数据库。解决这个问题总共需要大约14个小时。我们的结果表明,从Cheon的算法的角度进行安全评估是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Results on Cheon's Algorithm
The discrete logarithm problem (DLP) is one of the familiar problem on which cryptographic schemes rely. In 2006, Cheon proposed an algorithm for solving DLP with auxiliary input which works better than conventional algorithms. This paper firstly reports experimental results on Cheon's algorithm for DLP on a super singular elliptic curve defined over $GF(3^{127})$, which is used for efficient pairing computation in practice. About 8 hours and 34 MByte data-base are required for the 1st step of Cheon's algorithm, and about 6 hours and 23 MByte data-base for the 2nd step. In total, about 14 hours are required for solving the problem. Our results imply that the security evaluation from a viewpoint of Cheon's algorithm is crucial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信