{"title":"基于FPGA的集火信号重构硬件架构","authors":"G. Carvalho, J. Ferreira, V. Tavares","doi":"10.1109/DCIS51330.2020.9268638","DOIUrl":null,"url":null,"abstract":"Typical analogue-to-digital conversion (ADC) architectures, at Nyquist rate, tend to occupy a big portion of the integrated circuit die area and to consume more power than desired. Recently, with the rise of Interet-of-Things (IoT), there is a high demand for architectures that can have both reduced area and power consumption. Time encoding machines (TEM) might be a promising alternative. These types of encoders result in very simple and low-power analogue circuits, shifting most of its complexity to the decoding stage, typically stationed in a place with access to more resources. This paper focuses on a particular TEM, the integrate-and-fire neuron (IFN). The IFN modulation is based on a simplified first-order model of neural operation and it encodes the signal in a very power efficient manner. In the end, a novel hardware architecture for the reconstruction of the IFN encoded signal based on a spiking model will be presented. The method is demonstrated and implemented on FPGA, reaching an ENOB as high as 8.23.","PeriodicalId":186963,"journal":{"name":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","volume":"76 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hardware architecture for integrate-and-fire signal reconstruction on FPGA\",\"authors\":\"G. Carvalho, J. Ferreira, V. Tavares\",\"doi\":\"10.1109/DCIS51330.2020.9268638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical analogue-to-digital conversion (ADC) architectures, at Nyquist rate, tend to occupy a big portion of the integrated circuit die area and to consume more power than desired. Recently, with the rise of Interet-of-Things (IoT), there is a high demand for architectures that can have both reduced area and power consumption. Time encoding machines (TEM) might be a promising alternative. These types of encoders result in very simple and low-power analogue circuits, shifting most of its complexity to the decoding stage, typically stationed in a place with access to more resources. This paper focuses on a particular TEM, the integrate-and-fire neuron (IFN). The IFN modulation is based on a simplified first-order model of neural operation and it encodes the signal in a very power efficient manner. In the end, a novel hardware architecture for the reconstruction of the IFN encoded signal based on a spiking model will be presented. The method is demonstrated and implemented on FPGA, reaching an ENOB as high as 8.23.\",\"PeriodicalId\":186963,\"journal\":{\"name\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"volume\":\"76 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCIS51330.2020.9268638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCIS51330.2020.9268638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware architecture for integrate-and-fire signal reconstruction on FPGA
Typical analogue-to-digital conversion (ADC) architectures, at Nyquist rate, tend to occupy a big portion of the integrated circuit die area and to consume more power than desired. Recently, with the rise of Interet-of-Things (IoT), there is a high demand for architectures that can have both reduced area and power consumption. Time encoding machines (TEM) might be a promising alternative. These types of encoders result in very simple and low-power analogue circuits, shifting most of its complexity to the decoding stage, typically stationed in a place with access to more resources. This paper focuses on a particular TEM, the integrate-and-fire neuron (IFN). The IFN modulation is based on a simplified first-order model of neural operation and it encodes the signal in a very power efficient manner. In the end, a novel hardware architecture for the reconstruction of the IFN encoded signal based on a spiking model will be presented. The method is demonstrated and implemented on FPGA, reaching an ENOB as high as 8.23.