弹道数据的K-BestMatch重构与比较

M. Nanni, R. Trasarti
{"title":"弹道数据的K-BestMatch重构与比较","authors":"M. Nanni, R. Trasarti","doi":"10.1109/ICDMW.2009.62","DOIUrl":null,"url":null,"abstract":"In this paper we propose a map matching method to overcoming the limitations of standard best-match reconstruction strategies. We use a more flexible approach which consider the k-optimal alternative paths to reconstruct the trajectories from the GPS raw data. The preliminary results, obtained on a real dataset of car users in Milan area, suggest that our method leads to beneficial effects on the successive analysis to be performed such as KNN and clustering.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"76 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"K-BestMatch Reconstruction and Comparison of Trajectory Data\",\"authors\":\"M. Nanni, R. Trasarti\",\"doi\":\"10.1109/ICDMW.2009.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a map matching method to overcoming the limitations of standard best-match reconstruction strategies. We use a more flexible approach which consider the k-optimal alternative paths to reconstruct the trajectories from the GPS raw data. The preliminary results, obtained on a real dataset of car users in Milan area, suggest that our method leads to beneficial effects on the successive analysis to be performed such as KNN and clustering.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"76 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了克服标准最佳匹配重建策略的局限性,本文提出了一种映射匹配方法。我们使用一种更灵活的方法,考虑k-最优备选路径来从GPS原始数据中重建轨迹。在米兰地区汽车用户的真实数据集上获得的初步结果表明,我们的方法对后续分析(如KNN和聚类)产生了有益的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-BestMatch Reconstruction and Comparison of Trajectory Data
In this paper we propose a map matching method to overcoming the limitations of standard best-match reconstruction strategies. We use a more flexible approach which consider the k-optimal alternative paths to reconstruct the trajectories from the GPS raw data. The preliminary results, obtained on a real dataset of car users in Milan area, suggest that our method leads to beneficial effects on the successive analysis to be performed such as KNN and clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信