基于因子图优化的AUV终端移动对接视觉集成导航方法

Tianheng Ma, Shumin Chen, Liang Ruan, Yuan-xin Xu
{"title":"基于因子图优化的AUV终端移动对接视觉集成导航方法","authors":"Tianheng Ma, Shumin Chen, Liang Ruan, Yuan-xin Xu","doi":"10.1109/CACRE58689.2023.10208719","DOIUrl":null,"url":null,"abstract":"The widespread use of Autonomous Underwater Vehicles (AUVs) highlights the need for autonomous docking, during which accurate pose estimation and navigation play a vital role. This paper proposes a multi-sensor fusion navigation framework based on the factor graph optimization method, integrating tightly-coupled visual information from the light array to provide high-accuracy and high-frequency relative pose estimations between AUV and its mobile dock at the terminal docking stage. Simulation results demonstrate that the proposed algorithm outperforms PnP and achieves smaller RMSE in relative attitude and translation estimations. Furthermore, the experiments show that the proposed algorithm provides smoother estimation results and that it has the potential to be deployed in embedded applications.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"383 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vision-Integrated Navigation Method in AUV Terminal Mobile Docking Based on Factor Graph Optimization\",\"authors\":\"Tianheng Ma, Shumin Chen, Liang Ruan, Yuan-xin Xu\",\"doi\":\"10.1109/CACRE58689.2023.10208719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of Autonomous Underwater Vehicles (AUVs) highlights the need for autonomous docking, during which accurate pose estimation and navigation play a vital role. This paper proposes a multi-sensor fusion navigation framework based on the factor graph optimization method, integrating tightly-coupled visual information from the light array to provide high-accuracy and high-frequency relative pose estimations between AUV and its mobile dock at the terminal docking stage. Simulation results demonstrate that the proposed algorithm outperforms PnP and achieves smaller RMSE in relative attitude and translation estimations. Furthermore, the experiments show that the proposed algorithm provides smoother estimation results and that it has the potential to be deployed in embedded applications.\",\"PeriodicalId\":447007,\"journal\":{\"name\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"383 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE58689.2023.10208719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自主水下航行器(auv)的广泛应用凸显了自主对接的必要性,在自主对接过程中,准确的姿态估计和导航起着至关重要的作用。本文提出了一种基于因子图优化方法的多传感器融合导航框架,整合来自光阵列的紧密耦合视觉信息,在终端对接阶段提供AUV与移动船坞之间高精度、高频的相对姿态估计。仿真结果表明,该算法在相对姿态和相对平移估计中均优于PnP算法,且RMSE较小。此外,实验表明,该算法提供了更平滑的估计结果,并具有在嵌入式应用中部署的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vision-Integrated Navigation Method in AUV Terminal Mobile Docking Based on Factor Graph Optimization
The widespread use of Autonomous Underwater Vehicles (AUVs) highlights the need for autonomous docking, during which accurate pose estimation and navigation play a vital role. This paper proposes a multi-sensor fusion navigation framework based on the factor graph optimization method, integrating tightly-coupled visual information from the light array to provide high-accuracy and high-frequency relative pose estimations between AUV and its mobile dock at the terminal docking stage. Simulation results demonstrate that the proposed algorithm outperforms PnP and achieves smaller RMSE in relative attitude and translation estimations. Furthermore, the experiments show that the proposed algorithm provides smoother estimation results and that it has the potential to be deployed in embedded applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信