动态场景中关节运动分割与背景估计

Adeel Mumtaz, Weichen Zhang, Antoni B. Chan
{"title":"动态场景中关节运动分割与背景估计","authors":"Adeel Mumtaz, Weichen Zhang, Antoni B. Chan","doi":"10.1109/CVPR.2014.54","DOIUrl":null,"url":null,"abstract":"We propose a joint foreground-background mixture model (FBM) that simultaneously performs background estimation and motion segmentation in complex dynamic scenes. Our FBM consist of a set of location-specific dynamic texture (DT) components, for modeling local background motion, and set of global DT components, for modeling consistent foreground motion. We derive an EM algorithm for estimating the parameters of the FBM. We also apply spatial constraints to the FBM using an Markov random field grid, and derive a corresponding variational approximation for inference. Unlike existing approaches to background subtraction, our FBM does not require a manually selected threshold or a separate training video. Unlike existing motion segmentation techniques, our FBM can segment foreground motions over complex background with mixed motions, and detect stopped objects. Since most dynamic scene datasets only contain videos with a single foreground object over a simple background, we develop a new challenging dataset with multiple foreground objects over complex dynamic backgrounds. In experiments, we show that jointly modeling the background and foreground segments with FBM yields significant improvements in accuracy on both background estimation and motion segmentation, compared to state-of-the-art methods.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"231 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Joint Motion Segmentation and Background Estimation in Dynamic Scenes\",\"authors\":\"Adeel Mumtaz, Weichen Zhang, Antoni B. Chan\",\"doi\":\"10.1109/CVPR.2014.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a joint foreground-background mixture model (FBM) that simultaneously performs background estimation and motion segmentation in complex dynamic scenes. Our FBM consist of a set of location-specific dynamic texture (DT) components, for modeling local background motion, and set of global DT components, for modeling consistent foreground motion. We derive an EM algorithm for estimating the parameters of the FBM. We also apply spatial constraints to the FBM using an Markov random field grid, and derive a corresponding variational approximation for inference. Unlike existing approaches to background subtraction, our FBM does not require a manually selected threshold or a separate training video. Unlike existing motion segmentation techniques, our FBM can segment foreground motions over complex background with mixed motions, and detect stopped objects. Since most dynamic scene datasets only contain videos with a single foreground object over a simple background, we develop a new challenging dataset with multiple foreground objects over complex dynamic backgrounds. In experiments, we show that jointly modeling the background and foreground segments with FBM yields significant improvements in accuracy on both background estimation and motion segmentation, compared to state-of-the-art methods.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"231 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

提出了一种同时进行复杂动态场景背景估计和运动分割的前景背景混合模型(FBM)。我们的FBM包括一组特定位置的动态纹理(DT)组件,用于建模局部背景运动,以及一组全局DT组件,用于建模一致的前景运动。我们推导了一种估计FBM参数的EM算法。我们还使用马尔可夫随机场网格将空间约束应用于FBM,并推导出相应的变分近似推理。与现有的背景减法方法不同,我们的FBM不需要手动选择阈值或单独的训练视频。与现有的运动分割技术不同,我们的FBM可以在混合运动的复杂背景上分割前景运动,并检测停止的物体。由于大多数动态场景数据集仅包含在简单背景上具有单个前景对象的视频,因此我们开发了一个具有复杂动态背景上具有多个前景对象的新的具有挑战性的数据集。在实验中,我们表明,与最先进的方法相比,使用FBM联合建模背景和前景片段在背景估计和运动分割方面的准确性都有显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Motion Segmentation and Background Estimation in Dynamic Scenes
We propose a joint foreground-background mixture model (FBM) that simultaneously performs background estimation and motion segmentation in complex dynamic scenes. Our FBM consist of a set of location-specific dynamic texture (DT) components, for modeling local background motion, and set of global DT components, for modeling consistent foreground motion. We derive an EM algorithm for estimating the parameters of the FBM. We also apply spatial constraints to the FBM using an Markov random field grid, and derive a corresponding variational approximation for inference. Unlike existing approaches to background subtraction, our FBM does not require a manually selected threshold or a separate training video. Unlike existing motion segmentation techniques, our FBM can segment foreground motions over complex background with mixed motions, and detect stopped objects. Since most dynamic scene datasets only contain videos with a single foreground object over a simple background, we develop a new challenging dataset with multiple foreground objects over complex dynamic backgrounds. In experiments, we show that jointly modeling the background and foreground segments with FBM yields significant improvements in accuracy on both background estimation and motion segmentation, compared to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信