第二类近似贝叶斯视角的多假设跟踪

Murat Uney
{"title":"第二类近似贝叶斯视角的多假设跟踪","authors":"Murat Uney","doi":"10.23919/fusion43075.2019.9011264","DOIUrl":null,"url":null,"abstract":"Multiple hypothesis tracking (MHT) is a computational procedure for recursively estimating multi-object configurations and states from measurements with association uncertainties, noise, false alarms and less than one probability of detection. From a probabilistic modelling perspective, the complete multi-object tracking (MT) model is intractable to perform statistical inference as the multi-object and measurement association configurations constitute infinite sets. In this article, we provide explicit formulae to demonstrate that MHT is a type II maximum a posteriori (MAP) approximate Bayes inference procedure over the complete MT model. In particular, we introduce a MT model that captures all typical uncertainties and show that the joint density of the global model hypotheses and the other variables involved is well defined. This model allows us to define the MT problem mathematically and contrast MHT and sequential Bayesian filtering. We argue that the computational procedures constituting an MHT algorithm such as model hypothesis pruning can be treated as a second stage of approximation for finding near-optimal solutions to the MAP problem given a computational budget.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"22 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type II approximate Bayes perspective to multiple hypothesis tracking\",\"authors\":\"Murat Uney\",\"doi\":\"10.23919/fusion43075.2019.9011264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple hypothesis tracking (MHT) is a computational procedure for recursively estimating multi-object configurations and states from measurements with association uncertainties, noise, false alarms and less than one probability of detection. From a probabilistic modelling perspective, the complete multi-object tracking (MT) model is intractable to perform statistical inference as the multi-object and measurement association configurations constitute infinite sets. In this article, we provide explicit formulae to demonstrate that MHT is a type II maximum a posteriori (MAP) approximate Bayes inference procedure over the complete MT model. In particular, we introduce a MT model that captures all typical uncertainties and show that the joint density of the global model hypotheses and the other variables involved is well defined. This model allows us to define the MT problem mathematically and contrast MHT and sequential Bayesian filtering. We argue that the computational procedures constituting an MHT algorithm such as model hypothesis pruning can be treated as a second stage of approximation for finding near-optimal solutions to the MAP problem given a computational budget.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"22 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多假设跟踪(MHT)是一种从具有关联不确定性、噪声、虚警和小于一个检测概率的测量中递归估计多目标配置和状态的计算过程。从概率建模的角度来看,完整的多目标跟踪(MT)模型难以进行统计推断,因为多目标和测量关联配置构成无限集。在本文中,我们提供了明确的公式来证明MHT是在完整MT模型上的II型最大后验(MAP)近似贝叶斯推理过程。特别是,我们引入了一个MT模型,该模型捕获了所有典型的不确定性,并表明全局模型假设和其他涉及的变量的联合密度是定义良好的。该模型允许我们从数学上定义MT问题,并将MHT和顺序贝叶斯滤波进行对比。我们认为,构成MHT算法的计算过程,如模型假设修剪,可以被视为在给定计算预算的情况下寻找MAP问题近最优解的近似的第二阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type II approximate Bayes perspective to multiple hypothesis tracking
Multiple hypothesis tracking (MHT) is a computational procedure for recursively estimating multi-object configurations and states from measurements with association uncertainties, noise, false alarms and less than one probability of detection. From a probabilistic modelling perspective, the complete multi-object tracking (MT) model is intractable to perform statistical inference as the multi-object and measurement association configurations constitute infinite sets. In this article, we provide explicit formulae to demonstrate that MHT is a type II maximum a posteriori (MAP) approximate Bayes inference procedure over the complete MT model. In particular, we introduce a MT model that captures all typical uncertainties and show that the joint density of the global model hypotheses and the other variables involved is well defined. This model allows us to define the MT problem mathematically and contrast MHT and sequential Bayesian filtering. We argue that the computational procedures constituting an MHT algorithm such as model hypothesis pruning can be treated as a second stage of approximation for finding near-optimal solutions to the MAP problem given a computational budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信