大尺度时空遥感数据标记的高效计算框架

M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka
{"title":"大尺度时空遥感数据标记的高效计算框架","authors":"M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka","doi":"10.1109/IC3.2014.6897247","DOIUrl":null,"url":null,"abstract":"We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"540 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An efficient computational framework for labeling large scale spatiotemporal remote sensing datasets\",\"authors\":\"M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka\",\"doi\":\"10.1109/IC3.2014.6897247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"540 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种用于遥感图像数据集区域半监督标记的新框架。我们的方法是将图像分解成不规则的小块或超像素,并根据强度直方图、几何形状、角密度和镶嵌尺度派生出新的特征。我们的分类管道使用k近邻或支持向量机获得初步分类,然后使用拉普拉斯传播算法进行细化。尽管涉及的数据量很大,但我们的方法很容易并行化且速度很快。给出的结果显示了我们的管道的准确性以及不同的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient computational framework for labeling large scale spatiotemporal remote sensing datasets
We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信