M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka
{"title":"大尺度时空遥感数据标记的高效计算框架","authors":"M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka","doi":"10.1109/IC3.2014.6897247","DOIUrl":null,"url":null,"abstract":"We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"540 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An efficient computational framework for labeling large scale spatiotemporal remote sensing datasets\",\"authors\":\"M. Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, S. Ranka\",\"doi\":\"10.1109/IC3.2014.6897247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"540 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient computational framework for labeling large scale spatiotemporal remote sensing datasets
We present a novel framework for semisupervised labeling of regions in remote sensing image datasets. Our approach works by decomposing the image into irregular patches or superpixels and derives novel features based on intensity histograms, geometry, corner density, and scale of tessellation. Our classification pipeline uses either k-nearest neighbors or SVM to obtain a preliminary classification which is then refined using Laplacian propagation algorithm. Our approach is easily parallelizable and fast despite the high volume of data involved. Results are presented which showcase the accuracy as well as different stages of our pipeline.