{"title":"基于一种新的鲁棒估计器的关系聚类在Web挖掘中的应用","authors":"O. Nasraoui, R. Krishnapuram, A. Joshi","doi":"10.1109/NAFIPS.1999.781785","DOIUrl":null,"url":null,"abstract":"Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a \"\"user session\" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"47 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Relational clustering based on a new robust estimator with application to Web mining\",\"authors\":\"O. Nasraoui, R. Krishnapuram, A. Joshi\",\"doi\":\"10.1109/NAFIPS.1999.781785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a \\\"\\\"user session\\\" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.\",\"PeriodicalId\":335957,\"journal\":{\"name\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"volume\":\"47 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.1999.781785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relational clustering based on a new robust estimator with application to Web mining
Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a ""user session" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.