基于一种新的鲁棒估计器的关系聚类在Web挖掘中的应用

O. Nasraoui, R. Krishnapuram, A. Joshi
{"title":"基于一种新的鲁棒估计器的关系聚类在Web挖掘中的应用","authors":"O. Nasraoui, R. Krishnapuram, A. Joshi","doi":"10.1109/NAFIPS.1999.781785","DOIUrl":null,"url":null,"abstract":"Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a \"\"user session\" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"47 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Relational clustering based on a new robust estimator with application to Web mining\",\"authors\":\"O. Nasraoui, R. Krishnapuram, A. Joshi\",\"doi\":\"10.1109/NAFIPS.1999.781785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a \\\"\\\"user session\\\" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.\",\"PeriodicalId\":335957,\"journal\":{\"name\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"volume\":\"47 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.1999.781785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

从大量访问日志中挖掘典型的用户配置文件和URL关联是Web个性化的一个重要组成部分。在本文中,我们将“用户会话”的概念定义为用户访问Web的临时压缩序列。我们还定义了捕获Web站点组织的两个Web会话之间的不相似性度量。为了基于两两不相似度对用户会话进行聚类,我们引入了关系模糊c-极大密度估计(RFC-MDE)算法。RFC-MDE是健壮的,可以处理这个应用程序中典型的异常值。我们展示了使用RFC-MDE从日志数据中提取用户配置文件的真实示例,并将其性能与标准的非欧几里得模糊c-means进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relational clustering based on a new robust estimator with application to Web mining
Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a ""user session" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信