结合局部和全局特征,采用迭代分类和区域合并的方法进行图像分割

Qiyao Yu, David A Clausi
{"title":"结合局部和全局特征,采用迭代分类和区域合并的方法进行图像分割","authors":"Qiyao Yu, David A Clausi","doi":"10.1109/CRV.2005.27","DOIUrl":null,"url":null,"abstract":"In MRF based unsupervised segmentation, the MRF model parameters are typically estimated globally. Those global statistics sometimes are far from accurate for local areas if the image is highly non-stationary, and hence will generate false boundaries. The problem cannot be solved if local statistics are not considered. This work incorporates the local feature of edge strength in the MRF energy function, and segmentation is obtained by reducing the energy function using iterative classification and region merging.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"138 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combining local and global features for image segmentation using iterative classification and region merging\",\"authors\":\"Qiyao Yu, David A Clausi\",\"doi\":\"10.1109/CRV.2005.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In MRF based unsupervised segmentation, the MRF model parameters are typically estimated globally. Those global statistics sometimes are far from accurate for local areas if the image is highly non-stationary, and hence will generate false boundaries. The problem cannot be solved if local statistics are not considered. This work incorporates the local feature of edge strength in the MRF energy function, and segmentation is obtained by reducing the energy function using iterative classification and region merging.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"138 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在基于MRF的无监督分割中,通常对MRF模型参数进行全局估计。如果图像高度非平稳,那么这些全局统计有时对局部区域来说是不准确的,因此会产生错误的边界。如果不考虑局部统计,这个问题就无法解决。该工作将边缘强度的局部特征融入到MRF能量函数中,通过迭代分类和区域合并对能量函数进行约简得到分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining local and global features for image segmentation using iterative classification and region merging
In MRF based unsupervised segmentation, the MRF model parameters are typically estimated globally. Those global statistics sometimes are far from accurate for local areas if the image is highly non-stationary, and hence will generate false boundaries. The problem cannot be solved if local statistics are not considered. This work incorporates the local feature of edge strength in the MRF energy function, and segmentation is obtained by reducing the energy function using iterative classification and region merging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信