Moysés S. Sampaio, Fabiano Oliveira, Jayme Szwarcfiter
{"title":"关于图的精细度","authors":"Moysés S. Sampaio, Fabiano Oliveira, Jayme Szwarcfiter","doi":"10.5753/ETC.2018.3165","DOIUrl":null,"url":null,"abstract":"Both graph classes of k-thin and proper k-thin graphs have recently been introduced generalizing interval and unit interval graphs, respectively. The complexity of the recognition of k-thin and proper k-thin are open, even for fixed k 2. In this work, we introduce a subclass of the proper 2-thin graphs, called proper 2-thin of precedence. For this class, we present a characterization and an efficient recognition algorithm.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"91 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sobre Finura Própria de Grafos\",\"authors\":\"Moysés S. Sampaio, Fabiano Oliveira, Jayme Szwarcfiter\",\"doi\":\"10.5753/ETC.2018.3165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both graph classes of k-thin and proper k-thin graphs have recently been introduced generalizing interval and unit interval graphs, respectively. The complexity of the recognition of k-thin and proper k-thin are open, even for fixed k 2. In this work, we introduce a subclass of the proper 2-thin graphs, called proper 2-thin of precedence. For this class, we present a characterization and an efficient recognition algorithm.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"91 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ETC.2018.3165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Both graph classes of k-thin and proper k-thin graphs have recently been introduced generalizing interval and unit interval graphs, respectively. The complexity of the recognition of k-thin and proper k-thin are open, even for fixed k 2. In this work, we introduce a subclass of the proper 2-thin graphs, called proper 2-thin of precedence. For this class, we present a characterization and an efficient recognition algorithm.