5G关键低时延通信的多用户抢占调度

Ali A. Esswie, K. Pedersen
{"title":"5G关键低时延通信的多用户抢占调度","authors":"Ali A. Esswie, K. Pedersen","doi":"10.1109/ISCC.2018.8538471","DOIUrl":null,"url":null,"abstract":"5G new radio is envisioned to support three major service classes: enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communications. Emerging URLLC services require up to one millisecond of communication latency with 99.999% success probability. Though, there is a fundamental trade-off between system spectral efficiency (SE) and achievable latency. This calls for novel scheduling protocols which cross-optimize system performance on user-centric; instead of network-centric basis. In this paper, we develop a joint multi-user preemptive scheduling strategy to simultaneously cross-optimize system SE and URLLC latency. At each scheduling opportunity, available URLLC traffic is always given higher priority. When sporadic URLLC traffic appears during a transmission time interval (TTI), proposed scheduler seeks for fitting the URLLC-eMBB traffic in a multi-user transmission. If the available spatial degrees of freedom are limited within a TTI, the URLLC traffic instantly overwrites part of the ongoing eMBB transmissions to satisfy the URLLC latency requirements, at the expense of minimal eMBB throughput loss. Extensive dynamic system level simulations show that proposed scheduler provides significant performance gain in terms of eMBB SE and URLLC latency.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"176 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multi-User Preemptive Scheduling For Critical Low Latency Communications in 5G Networks\",\"authors\":\"Ali A. Esswie, K. Pedersen\",\"doi\":\"10.1109/ISCC.2018.8538471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G new radio is envisioned to support three major service classes: enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communications. Emerging URLLC services require up to one millisecond of communication latency with 99.999% success probability. Though, there is a fundamental trade-off between system spectral efficiency (SE) and achievable latency. This calls for novel scheduling protocols which cross-optimize system performance on user-centric; instead of network-centric basis. In this paper, we develop a joint multi-user preemptive scheduling strategy to simultaneously cross-optimize system SE and URLLC latency. At each scheduling opportunity, available URLLC traffic is always given higher priority. When sporadic URLLC traffic appears during a transmission time interval (TTI), proposed scheduler seeks for fitting the URLLC-eMBB traffic in a multi-user transmission. If the available spatial degrees of freedom are limited within a TTI, the URLLC traffic instantly overwrites part of the ongoing eMBB transmissions to satisfy the URLLC latency requirements, at the expense of minimal eMBB throughput loss. Extensive dynamic system level simulations show that proposed scheduler provides significant performance gain in terms of eMBB SE and URLLC latency.\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"176 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

5G新无线电预计将支持三种主要服务类别:增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类型通信。新兴的URLLC服务需要高达一毫秒的通信延迟,成功率为99.999%。但是,在系统频谱效率(SE)和可实现的延迟之间存在一个基本的权衡。这需要新的调度协议,以用户为中心交叉优化系统性能;而不是以网络为中心。本文提出了一种联合多用户抢占调度策略,以同时交叉优化系统SE和URLLC延迟。在每个调度机会中,可用的URLLC流量总是被赋予更高的优先级。当在传输时间间隔(TTI)期间出现零星的URLLC流量时,建议的调度器寻求在多用户传输中适应URLLC- embb流量。如果可用的空间自由度在TTI内受到限制,URLLC流量会立即覆盖正在进行的eMBB传输的一部分,以满足URLLC延迟需求,代价是eMBB吞吐量损失最小。大量的动态系统级仿真表明,所提出的调度器在eMBB SE和URLLC延迟方面提供了显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-User Preemptive Scheduling For Critical Low Latency Communications in 5G Networks
5G new radio is envisioned to support three major service classes: enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communications. Emerging URLLC services require up to one millisecond of communication latency with 99.999% success probability. Though, there is a fundamental trade-off between system spectral efficiency (SE) and achievable latency. This calls for novel scheduling protocols which cross-optimize system performance on user-centric; instead of network-centric basis. In this paper, we develop a joint multi-user preemptive scheduling strategy to simultaneously cross-optimize system SE and URLLC latency. At each scheduling opportunity, available URLLC traffic is always given higher priority. When sporadic URLLC traffic appears during a transmission time interval (TTI), proposed scheduler seeks for fitting the URLLC-eMBB traffic in a multi-user transmission. If the available spatial degrees of freedom are limited within a TTI, the URLLC traffic instantly overwrites part of the ongoing eMBB transmissions to satisfy the URLLC latency requirements, at the expense of minimal eMBB throughput loss. Extensive dynamic system level simulations show that proposed scheduler provides significant performance gain in terms of eMBB SE and URLLC latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信