{"title":"基于fr<s:1>切函数的位置参数非参数推断","authors":"V. Patrangenaru, Ruite Guo, K. D. Yao","doi":"10.1109/SMRLO.2016.50","DOIUrl":null,"url":null,"abstract":"Given a random object on a stratified space, one defines the Fréchet mean, the Fréchet antimean and additional population parameters associated withits Fréchet function, in case this function is a Morse function as well. In this paper we give large sample and nonparametric bootstrap estimation methods for these parameters, followed by the consistency of Fréchet sample antimean and the Central Limit Theorem of Fréchet sample antimean.","PeriodicalId":254910,"journal":{"name":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","volume":"162 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Nonparametric Inference for Location Parameters via Fréchet Functions\",\"authors\":\"V. Patrangenaru, Ruite Guo, K. D. Yao\",\"doi\":\"10.1109/SMRLO.2016.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a random object on a stratified space, one defines the Fréchet mean, the Fréchet antimean and additional population parameters associated withits Fréchet function, in case this function is a Morse function as well. In this paper we give large sample and nonparametric bootstrap estimation methods for these parameters, followed by the consistency of Fréchet sample antimean and the Central Limit Theorem of Fréchet sample antimean.\",\"PeriodicalId\":254910,\"journal\":{\"name\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"volume\":\"162 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMRLO.2016.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMRLO.2016.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric Inference for Location Parameters via Fréchet Functions
Given a random object on a stratified space, one defines the Fréchet mean, the Fréchet antimean and additional population parameters associated withits Fréchet function, in case this function is a Morse function as well. In this paper we give large sample and nonparametric bootstrap estimation methods for these parameters, followed by the consistency of Fréchet sample antimean and the Central Limit Theorem of Fréchet sample antimean.