一种高效的保护隐私的物联网人脸识别系统

Wanli Xue, Wen Hu, Praveen Gauranvaram, A. Seneviratne, Sanjay Jha
{"title":"一种高效的保护隐私的物联网人脸识别系统","authors":"Wanli Xue, Wen Hu, Praveen Gauranvaram, A. Seneviratne, Sanjay Jha","doi":"10.1109/ETSecIoT50046.2020.00006","DOIUrl":null,"url":null,"abstract":"Face recognition (FR) has become increasingly important in many real-world IoT applications like public safety surveillance camera system or CCTV, person re-identification system and face-based authentication system. The privacy of face images has been a growing concern, not only in the collected face dataset stored in the cloud platforms but also in its everyday use. However, most existing schemes (e.g., deep learning with differential privacy [1]) build privacy-preserving analytics models from the stored face data while ignoring the privacy concern in end devices. In this paper, we propose a novel efficient privacy-preserving face representation scheme in the Bloom filter space, which can satisfy the resource limits from IoT devices. Our solution allows analytics tasks on privacy-preserving face data representation but retains the high data utility on analytics (e.g., classification).","PeriodicalId":193628,"journal":{"name":"2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT)","volume":"753 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Efficient Privacy-preserving IoT System for Face Recognition\",\"authors\":\"Wanli Xue, Wen Hu, Praveen Gauranvaram, A. Seneviratne, Sanjay Jha\",\"doi\":\"10.1109/ETSecIoT50046.2020.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition (FR) has become increasingly important in many real-world IoT applications like public safety surveillance camera system or CCTV, person re-identification system and face-based authentication system. The privacy of face images has been a growing concern, not only in the collected face dataset stored in the cloud platforms but also in its everyday use. However, most existing schemes (e.g., deep learning with differential privacy [1]) build privacy-preserving analytics models from the stored face data while ignoring the privacy concern in end devices. In this paper, we propose a novel efficient privacy-preserving face representation scheme in the Bloom filter space, which can satisfy the resource limits from IoT devices. Our solution allows analytics tasks on privacy-preserving face data representation but retains the high data utility on analytics (e.g., classification).\",\"PeriodicalId\":193628,\"journal\":{\"name\":\"2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT)\",\"volume\":\"753 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETSecIoT50046.2020.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETSecIoT50046.2020.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人脸识别(FR)在许多现实世界的物联网应用中变得越来越重要,如公共安全监控摄像头系统或CCTV,人员再识别系统和基于人脸的认证系统。无论是存储在云平台上的采集到的人脸数据集,还是在日常使用中,人脸图像的隐私问题都日益受到关注。然而,大多数现有方案(例如,具有差分隐私的深度学习[1])从存储的面部数据中构建保护隐私的分析模型,而忽略了终端设备中的隐私问题。在本文中,我们提出了一种新的在布隆过滤器空间中有效保护隐私的人脸表示方案,该方案可以满足物联网设备的资源限制。我们的解决方案允许在保护隐私的面部数据表示上进行分析任务,但保留了分析上的高数据效用(例如,分类)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Privacy-preserving IoT System for Face Recognition
Face recognition (FR) has become increasingly important in many real-world IoT applications like public safety surveillance camera system or CCTV, person re-identification system and face-based authentication system. The privacy of face images has been a growing concern, not only in the collected face dataset stored in the cloud platforms but also in its everyday use. However, most existing schemes (e.g., deep learning with differential privacy [1]) build privacy-preserving analytics models from the stored face data while ignoring the privacy concern in end devices. In this paper, we propose a novel efficient privacy-preserving face representation scheme in the Bloom filter space, which can satisfy the resource limits from IoT devices. Our solution allows analytics tasks on privacy-preserving face data representation but retains the high data utility on analytics (e.g., classification).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信