{"title":"Bergman空间零集,模形式,von Neumann代数和有序群(Pierre de la Harpe编辑)","authors":"V. Jones","doi":"10.4171/lem/1045","DOIUrl":null,"url":null,"abstract":"$A^2_{\\alpha}$ will denote the weighted $L^2$ Bergman space. Given a subset $S$ of the open unit disc we define $\\Omega(S)$ to be the infimum of $\\{s| \\exists f \\in A^2_{s-2}, f\\neq 0, \\mbox{ having $S$ as its zero set} \\}$.By classical results on Hardy space there are sets $S$ for which $\\Omega(S)=1$. Using von Neumann dimension techniques and cusp forms we give examples of $S$ where $1<\\Omega(S)<\\infty$. By using a left order on certain Fuchsian groups we are able to calculate $\\Omega(S)$ exactly if $\\Omega (S)$ is the orbit of a Fuchsian group. This technique also allows us to derive in a new way well known results on zeros of cusp forms and indeed calculate the whole algebra of modular forms for \\pslz.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"102 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bergman space zero sets, modular forms, von Neumann algebras and ordered groups (edited by Pierre de la Harpe)\",\"authors\":\"V. Jones\",\"doi\":\"10.4171/lem/1045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$A^2_{\\\\alpha}$ will denote the weighted $L^2$ Bergman space. Given a subset $S$ of the open unit disc we define $\\\\Omega(S)$ to be the infimum of $\\\\{s| \\\\exists f \\\\in A^2_{s-2}, f\\\\neq 0, \\\\mbox{ having $S$ as its zero set} \\\\}$.By classical results on Hardy space there are sets $S$ for which $\\\\Omega(S)=1$. Using von Neumann dimension techniques and cusp forms we give examples of $S$ where $1<\\\\Omega(S)<\\\\infty$. By using a left order on certain Fuchsian groups we are able to calculate $\\\\Omega(S)$ exactly if $\\\\Omega (S)$ is the orbit of a Fuchsian group. This technique also allows us to derive in a new way well known results on zeros of cusp forms and indeed calculate the whole algebra of modular forms for \\\\pslz.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"102 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
$A^2_{\alpha}$ 表示加权$L^2$ Bergman空间。给定开单位圆盘的一个子集$S$,我们定义$\Omega(S)$为$\{s| \exists f \in A^2_{s-2}, f\neq 0, \mbox{ having $ S $ as its zero set} \}$的最小值。根据Hardy空间上的经典结果,存在集$S$,其中$\Omega(S)=1$。使用冯·诺伊曼维技术和尖端形式,我们给出了$S$的例子,其中$1<\Omega(S)<\infty$。通过在某些Fuchsian群上使用左序,我们能够精确地计算$\Omega(S)$,如果$\Omega (S)$是Fuchsian群的轨道。这种技术还允许我们以一种新的方式推导出已知的关于零尖形式的结果,并确实计算出\pslz的模形式的整个代数。
Bergman space zero sets, modular forms, von Neumann algebras and ordered groups (edited by Pierre de la Harpe)
$A^2_{\alpha}$ will denote the weighted $L^2$ Bergman space. Given a subset $S$ of the open unit disc we define $\Omega(S)$ to be the infimum of $\{s| \exists f \in A^2_{s-2}, f\neq 0, \mbox{ having $S$ as its zero set} \}$.By classical results on Hardy space there are sets $S$ for which $\Omega(S)=1$. Using von Neumann dimension techniques and cusp forms we give examples of $S$ where $1<\Omega(S)<\infty$. By using a left order on certain Fuchsian groups we are able to calculate $\Omega(S)$ exactly if $\Omega (S)$ is the orbit of a Fuchsian group. This technique also allows us to derive in a new way well known results on zeros of cusp forms and indeed calculate the whole algebra of modular forms for \pslz.