CV-SLAM使用天花板边界

Hyukdoo Choi, Dong Yeop Kim, J. Hwang, Euntai Kim, Young-Ouk Kim
{"title":"CV-SLAM使用天花板边界","authors":"Hyukdoo Choi, Dong Yeop Kim, J. Hwang, Euntai Kim, Young-Ouk Kim","doi":"10.1109/ICIEA.2010.5516788","DOIUrl":null,"url":null,"abstract":"This paper deals with simultaneous localization and mapping(SLAM) problem for a mobile robot that travels around the indoor environments. A single camera looking up the ceiling is used as the only sensor. Line features are extracted from the boundaries between the ceiling and walls and parameterized for SLAM update. Extended Kalman Filter(EKF) is used for simultaneously estimating the current robot pose and building a map with the line features. When the robot is kidnapped, Monte Carlo Localization(MCL) is used for finding the robot pose. To improve the localization performance, the resampling method is modified. The experiment is practiced in our indoor test bed and the proposed algorithms are proved by the experimental results.","PeriodicalId":234296,"journal":{"name":"2010 5th IEEE Conference on Industrial Electronics and Applications","volume":"376 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"CV-SLAM using ceiling boundary\",\"authors\":\"Hyukdoo Choi, Dong Yeop Kim, J. Hwang, Euntai Kim, Young-Ouk Kim\",\"doi\":\"10.1109/ICIEA.2010.5516788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with simultaneous localization and mapping(SLAM) problem for a mobile robot that travels around the indoor environments. A single camera looking up the ceiling is used as the only sensor. Line features are extracted from the boundaries between the ceiling and walls and parameterized for SLAM update. Extended Kalman Filter(EKF) is used for simultaneously estimating the current robot pose and building a map with the line features. When the robot is kidnapped, Monte Carlo Localization(MCL) is used for finding the robot pose. To improve the localization performance, the resampling method is modified. The experiment is practiced in our indoor test bed and the proposed algorithms are proved by the experimental results.\",\"PeriodicalId\":234296,\"journal\":{\"name\":\"2010 5th IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"376 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2010.5516788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2010.5516788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了在室内环境中移动机器人的同时定位与映射问题。唯一的传感器是一个指向天花板的摄像头。从天花板和墙壁之间的边界提取线特征并参数化以进行SLAM更新。扩展卡尔曼滤波(EKF)用于同时估计机器人的当前姿态和建立具有线特征的地图。当机器人被绑架时,使用蒙特卡罗定位(Monte Carlo Localization, MCL)来寻找机器人的姿态。为了提高定位性能,对重采样方法进行了改进。在我们的室内实验台上进行了实验,实验结果验证了所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CV-SLAM using ceiling boundary
This paper deals with simultaneous localization and mapping(SLAM) problem for a mobile robot that travels around the indoor environments. A single camera looking up the ceiling is used as the only sensor. Line features are extracted from the boundaries between the ceiling and walls and parameterized for SLAM update. Extended Kalman Filter(EKF) is used for simultaneously estimating the current robot pose and building a map with the line features. When the robot is kidnapped, Monte Carlo Localization(MCL) is used for finding the robot pose. To improve the localization performance, the resampling method is modified. The experiment is practiced in our indoor test bed and the proposed algorithms are proved by the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信