用降阶输出噪声识别预测误差

P. V. D. Hof, Harm H. M. Weerts, Arne G. Dankers
{"title":"用降阶输出噪声识别预测误差","authors":"P. V. D. Hof, Harm H. M. Weerts, Arne G. Dankers","doi":"10.23919/ACC.2017.7962983","DOIUrl":null,"url":null,"abstract":"In data-driven modelling in dynamic networks, it is commonly assumed that all measured node variables in the network are noise-disturbed and that the network (vector) noise process is full rank. However when the scale of the network increases, this full rank assumption may not be considered as realistic, as noises on different node signals can be strongly correlated. In this paper it is analyzed how a prediction error method can deal with a noise disturbance whose dimension is strictly larger than the number of white noise signals than is required to generate it (rank-reduced noise). Based on maximum likelihood considerations, an appropriate prediction error identification criterion will be derived and consistency will be shown, while variance results will be demonstrated in a simulation example.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"789 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction error identification with rank-reduced output noise\",\"authors\":\"P. V. D. Hof, Harm H. M. Weerts, Arne G. Dankers\",\"doi\":\"10.23919/ACC.2017.7962983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data-driven modelling in dynamic networks, it is commonly assumed that all measured node variables in the network are noise-disturbed and that the network (vector) noise process is full rank. However when the scale of the network increases, this full rank assumption may not be considered as realistic, as noises on different node signals can be strongly correlated. In this paper it is analyzed how a prediction error method can deal with a noise disturbance whose dimension is strictly larger than the number of white noise signals than is required to generate it (rank-reduced noise). Based on maximum likelihood considerations, an appropriate prediction error identification criterion will be derived and consistency will be shown, while variance results will be demonstrated in a simulation example.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"789 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7962983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7962983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在动态网络的数据驱动建模中,通常假设网络中所有被测量的节点变量都受到噪声干扰,并且网络(向量)噪声过程是满秩的。然而,当网络规模增加时,这种全秩假设可能不太现实,因为不同节点信号上的噪声可能是强相关的。本文分析了预测误差方法如何处理维数严格大于产生白噪声信号数量的噪声干扰(降阶噪声)。基于最大似然考虑,推导出适当的预测误差识别准则,并显示一致性,同时通过仿真示例演示方差结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction error identification with rank-reduced output noise
In data-driven modelling in dynamic networks, it is commonly assumed that all measured node variables in the network are noise-disturbed and that the network (vector) noise process is full rank. However when the scale of the network increases, this full rank assumption may not be considered as realistic, as noises on different node signals can be strongly correlated. In this paper it is analyzed how a prediction error method can deal with a noise disturbance whose dimension is strictly larger than the number of white noise signals than is required to generate it (rank-reduced noise). Based on maximum likelihood considerations, an appropriate prediction error identification criterion will be derived and consistency will be shown, while variance results will be demonstrated in a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信