用Swendsen-Wang分割图

Adrian Barbu, Song-Chun Zhu
{"title":"用Swendsen-Wang分割图","authors":"Adrian Barbu, Song-Chun Zhu","doi":"10.1109/ICCV.2003.1238362","DOIUrl":null,"url":null,"abstract":"Vision tasks, such as segmentation, grouping, recognition, can be formulated as graph partition problems. The recent literature witnessed two popular graph cut algorithms: the Ncut using spectral graph analysis and the minimum-cut using the maximum flow algorithm. We present a third major approach by generalizing the Swendsen-Wang method - a well celebrated algorithm in statistical mechanics. Our algorithm simulates ergodic, reversible Markov chain jumps in the space of graph partitions to sample a posterior probability. At each step, the algorithm splits, merges, or regroups a sizable subgraph, and achieves fast mixing at low temperature enabling a fast annealing procedure. Experiments show it converges in 2-30 seconds on a PC for image segmentation. This is 400 times faster than the single-site update Gibbs sampler, and 20-40 times faster than the DDMCMC algorithm. The algorithm can optimize over the number of models and works for general forms of posterior probabilities, so it is more general than the existing graph cut approaches.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"178 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Graph partition by Swendsen-Wang cuts\",\"authors\":\"Adrian Barbu, Song-Chun Zhu\",\"doi\":\"10.1109/ICCV.2003.1238362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision tasks, such as segmentation, grouping, recognition, can be formulated as graph partition problems. The recent literature witnessed two popular graph cut algorithms: the Ncut using spectral graph analysis and the minimum-cut using the maximum flow algorithm. We present a third major approach by generalizing the Swendsen-Wang method - a well celebrated algorithm in statistical mechanics. Our algorithm simulates ergodic, reversible Markov chain jumps in the space of graph partitions to sample a posterior probability. At each step, the algorithm splits, merges, or regroups a sizable subgraph, and achieves fast mixing at low temperature enabling a fast annealing procedure. Experiments show it converges in 2-30 seconds on a PC for image segmentation. This is 400 times faster than the single-site update Gibbs sampler, and 20-40 times faster than the DDMCMC algorithm. The algorithm can optimize over the number of models and works for general forms of posterior probabilities, so it is more general than the existing graph cut approaches.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"178 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

视觉任务,如分割、分组、识别,可以表述为图划分问题。最近的文献见证了两种流行的图割算法:使用谱图分析的Ncut算法和使用最大流量算法的最小割算法。我们通过推广Swendsen-Wang方法(统计力学中一个著名的算法)提出了第三种主要方法。我们的算法模拟遍历的,可逆的马尔可夫链跳跃在空间的图分区采样后验概率。在每一步,算法拆分,合并,或重组一个相当大的子图,并实现快速混合在低温下实现快速退火过程。实验表明,该算法在PC机上的图像分割时间为2 ~ 30秒。这比单站点更新Gibbs采样器快400倍,比DDMCMC算法快20-40倍。该算法可以对模型的数量进行优化,并适用于一般形式的后验概率,因此它比现有的图割方法更具通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph partition by Swendsen-Wang cuts
Vision tasks, such as segmentation, grouping, recognition, can be formulated as graph partition problems. The recent literature witnessed two popular graph cut algorithms: the Ncut using spectral graph analysis and the minimum-cut using the maximum flow algorithm. We present a third major approach by generalizing the Swendsen-Wang method - a well celebrated algorithm in statistical mechanics. Our algorithm simulates ergodic, reversible Markov chain jumps in the space of graph partitions to sample a posterior probability. At each step, the algorithm splits, merges, or regroups a sizable subgraph, and achieves fast mixing at low temperature enabling a fast annealing procedure. Experiments show it converges in 2-30 seconds on a PC for image segmentation. This is 400 times faster than the single-site update Gibbs sampler, and 20-40 times faster than the DDMCMC algorithm. The algorithm can optimize over the number of models and works for general forms of posterior probabilities, so it is more general than the existing graph cut approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信