{"title":"Lp-testing","authors":"P. Berman, Sofya Raskhodnikova, G. Yaroslavtsev","doi":"10.1145/2591796.2591887","DOIUrl":null,"url":null,"abstract":"We initiate a systematic study of sublinear algorithms for approximately testing properties of real-valued data with respect to Lp distances for p = 1, 2. Such algorithms distinguish datasets which either have (or are close to having) a certain property from datasets which are far from having it with respect to Lp distance. For applications involving noisy real-valued data, using Lp distances allows algorithms to withstand noise of bounded Lp norm. While the classical property testing framework developed with respect to Hamming distance has been studied extensively, testing with respect to Lp distances has received little attention. We use our framework to design simple and fast algorithms for classic problems, such as testing monotonicity, convexity and the Lipschitz property, and also distance approximation to monotonicity. In particular, for functions over the hypergrid domains [n]d, the complexity of our algorithms for all these properties does not depend on the linear dimension n. This is impossible in the standard model. Most of our algorithms require minimal assumptions on the choice of sampled data: either uniform or easily samplable random queries suffice. We also show connections between the Lp-testing model and the standard framework of property testing with respect to Hamming distance. Some of our results improve existing bounds for Hamming distance.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"391 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Lp-testing\",\"authors\":\"P. Berman, Sofya Raskhodnikova, G. Yaroslavtsev\",\"doi\":\"10.1145/2591796.2591887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate a systematic study of sublinear algorithms for approximately testing properties of real-valued data with respect to Lp distances for p = 1, 2. Such algorithms distinguish datasets which either have (or are close to having) a certain property from datasets which are far from having it with respect to Lp distance. For applications involving noisy real-valued data, using Lp distances allows algorithms to withstand noise of bounded Lp norm. While the classical property testing framework developed with respect to Hamming distance has been studied extensively, testing with respect to Lp distances has received little attention. We use our framework to design simple and fast algorithms for classic problems, such as testing monotonicity, convexity and the Lipschitz property, and also distance approximation to monotonicity. In particular, for functions over the hypergrid domains [n]d, the complexity of our algorithms for all these properties does not depend on the linear dimension n. This is impossible in the standard model. Most of our algorithms require minimal assumptions on the choice of sampled data: either uniform or easily samplable random queries suffice. We also show connections between the Lp-testing model and the standard framework of property testing with respect to Hamming distance. Some of our results improve existing bounds for Hamming distance.\",\"PeriodicalId\":123501,\"journal\":{\"name\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"volume\":\"391 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591796.2591887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We initiate a systematic study of sublinear algorithms for approximately testing properties of real-valued data with respect to Lp distances for p = 1, 2. Such algorithms distinguish datasets which either have (or are close to having) a certain property from datasets which are far from having it with respect to Lp distance. For applications involving noisy real-valued data, using Lp distances allows algorithms to withstand noise of bounded Lp norm. While the classical property testing framework developed with respect to Hamming distance has been studied extensively, testing with respect to Lp distances has received little attention. We use our framework to design simple and fast algorithms for classic problems, such as testing monotonicity, convexity and the Lipschitz property, and also distance approximation to monotonicity. In particular, for functions over the hypergrid domains [n]d, the complexity of our algorithms for all these properties does not depend on the linear dimension n. This is impossible in the standard model. Most of our algorithms require minimal assumptions on the choice of sampled data: either uniform or easily samplable random queries suffice. We also show connections between the Lp-testing model and the standard framework of property testing with respect to Hamming distance. Some of our results improve existing bounds for Hamming distance.