使用底层音乐偏好结构的基于内容的音乐推荐

M. Soleymani, Anna Aljanaki, F. Wiering, R. Veltkamp
{"title":"使用底层音乐偏好结构的基于内容的音乐推荐","authors":"M. Soleymani, Anna Aljanaki, F. Wiering, R. Veltkamp","doi":"10.1109/ICME.2015.7177504","DOIUrl":null,"url":null,"abstract":"The cold start problem for new users or items is a great challenge for recommender systems. New items can be positioned within the existing items using a similarity metric to estimate their ratings. However, the calculation of similarity varies by domain and available resources. In this paper, we propose a content-based music recommender system which is based on a set of attributes derived from psychological studies of music preference. These five attributes, namely, Mellow, Unpretentious, Sophisticated, Intense and Contemporary (MUSIC), better describe the underlying factors of music preference compared to music genre. Using 249 songs and hundreds of ratings and attribute scores, we first develop an acoustic content-based attribute detection using auditory modulation features and a regression by sparse representation. We then use the estimated attributes in a cold start recommendation scenario. The proposed content-based recommendation significantly outperforms genre-based and user-based recommendation based on the root-mean-square error. The results demonstrate the effectiveness of these attributes in music preference estimation. Such methods will increase the chance of less popular but interesting songs in the long tail to be listened to.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"297 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Content-based music recommendation using underlying music preference structure\",\"authors\":\"M. Soleymani, Anna Aljanaki, F. Wiering, R. Veltkamp\",\"doi\":\"10.1109/ICME.2015.7177504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cold start problem for new users or items is a great challenge for recommender systems. New items can be positioned within the existing items using a similarity metric to estimate their ratings. However, the calculation of similarity varies by domain and available resources. In this paper, we propose a content-based music recommender system which is based on a set of attributes derived from psychological studies of music preference. These five attributes, namely, Mellow, Unpretentious, Sophisticated, Intense and Contemporary (MUSIC), better describe the underlying factors of music preference compared to music genre. Using 249 songs and hundreds of ratings and attribute scores, we first develop an acoustic content-based attribute detection using auditory modulation features and a regression by sparse representation. We then use the estimated attributes in a cold start recommendation scenario. The proposed content-based recommendation significantly outperforms genre-based and user-based recommendation based on the root-mean-square error. The results demonstrate the effectiveness of these attributes in music preference estimation. Such methods will increase the chance of less popular but interesting songs in the long tail to be listened to.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"297 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

新用户或新项目的冷启动问题对推荐系统来说是一个巨大的挑战。新项目可以在现有项目中定位,使用相似性度量来估计它们的评级。然而,相似度的计算因领域和可用资源而异。在本文中,我们提出了一个基于内容的音乐推荐系统,该系统基于一组来自音乐偏好心理学研究的属性。与音乐类型相比,“醇厚”、“朴实”、“精致”、“强烈”和“当代”这五个属性更能描述音乐偏好的潜在因素。使用249首歌曲和数百个评级和属性分数,我们首先使用听觉调制特征和稀疏表示回归开发了基于声学内容的属性检测。然后,我们在冷启动推荐场景中使用估计的属性。基于内容的推荐显著优于基于体裁和基于均方根误差的用户推荐。结果证明了这些属性在音乐偏好估计中的有效性。这些方法将增加长尾中不太流行但有趣的歌曲被听的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-based music recommendation using underlying music preference structure
The cold start problem for new users or items is a great challenge for recommender systems. New items can be positioned within the existing items using a similarity metric to estimate their ratings. However, the calculation of similarity varies by domain and available resources. In this paper, we propose a content-based music recommender system which is based on a set of attributes derived from psychological studies of music preference. These five attributes, namely, Mellow, Unpretentious, Sophisticated, Intense and Contemporary (MUSIC), better describe the underlying factors of music preference compared to music genre. Using 249 songs and hundreds of ratings and attribute scores, we first develop an acoustic content-based attribute detection using auditory modulation features and a regression by sparse representation. We then use the estimated attributes in a cold start recommendation scenario. The proposed content-based recommendation significantly outperforms genre-based and user-based recommendation based on the root-mean-square error. The results demonstrate the effectiveness of these attributes in music preference estimation. Such methods will increase the chance of less popular but interesting songs in the long tail to be listened to.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信