估计开环TSP实例难度的11种方法的比较

Lahari Sengupta, P. Fränti
{"title":"估计开环TSP实例难度的11种方法的比较","authors":"Lahari Sengupta, P. Fränti","doi":"10.3934/aci.2021001","DOIUrl":null,"url":null,"abstract":"\n From the theory of algorithms, we know that the time complexity of finding the optimal solution for a traveling salesman problem (TSP) grows exponentially with the number of targets. However, the size of the problem instance is not the only factor that affects its difficulty. In this paper, we review existing measures to estimate the difficulty of a problem instance. We also introduce MST branches and two other measures called greedy path and greedy gap. The idea of MST branches is to generate minimum spanning tree (MST) and then calculate the number of branches in the tree. A branch is a target, which is connected to at least two other targets. We perform an extensive comparison of 11 measures to see how well they correlate to human and computer performance. We evaluate the measures based on time complexity, prediction capability, suitability, and practicality. The results show that while the MST branches measure is simple, fast to compute, and does not need to have the optimal solution as a reference unlike many other measures. It correlates equally good or even better than the best of the previous measures ‑ the number of targets, and the number of targets on the convex hull.\n","PeriodicalId":414924,"journal":{"name":"Applied Computing and Intelligence","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of eleven measures for estimating difficulty of open-loop TSP instances\",\"authors\":\"Lahari Sengupta, P. Fränti\",\"doi\":\"10.3934/aci.2021001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n From the theory of algorithms, we know that the time complexity of finding the optimal solution for a traveling salesman problem (TSP) grows exponentially with the number of targets. However, the size of the problem instance is not the only factor that affects its difficulty. In this paper, we review existing measures to estimate the difficulty of a problem instance. We also introduce MST branches and two other measures called greedy path and greedy gap. The idea of MST branches is to generate minimum spanning tree (MST) and then calculate the number of branches in the tree. A branch is a target, which is connected to at least two other targets. We perform an extensive comparison of 11 measures to see how well they correlate to human and computer performance. We evaluate the measures based on time complexity, prediction capability, suitability, and practicality. The results show that while the MST branches measure is simple, fast to compute, and does not need to have the optimal solution as a reference unlike many other measures. It correlates equally good or even better than the best of the previous measures ‑ the number of targets, and the number of targets on the convex hull.\\n\",\"PeriodicalId\":414924,\"journal\":{\"name\":\"Applied Computing and Intelligence\",\"volume\":\"372 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/aci.2021001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/aci.2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从算法理论可知,寻找旅行推销员问题(TSP)最优解的时间复杂度随着目标数量的增加呈指数增长。然而,问题实例的大小并不是影响其难度的唯一因素。在本文中,我们回顾了现有的估计问题实例难度的方法。我们还引入了MST分支以及贪心路径和贪心间隙这两个度量。MST分支的思想是先生成最小生成树(minimum spanning tree, MST),然后计算树中分支的个数。分支是一个目标,它连接到至少两个其他目标。我们对11项措施进行了广泛的比较,以了解它们与人类和计算机性能的关系。我们根据时间复杂性、预测能力、适用性和实用性来评估这些措施。结果表明,虽然MST分支度量简单,计算速度快,并且不需要像许多其他度量一样有最优解作为参考。它与之前最好的测量方法——目标数量和凸壳上的目标数量——之间的相关性同样好,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of eleven measures for estimating difficulty of open-loop TSP instances
From the theory of algorithms, we know that the time complexity of finding the optimal solution for a traveling salesman problem (TSP) grows exponentially with the number of targets. However, the size of the problem instance is not the only factor that affects its difficulty. In this paper, we review existing measures to estimate the difficulty of a problem instance. We also introduce MST branches and two other measures called greedy path and greedy gap. The idea of MST branches is to generate minimum spanning tree (MST) and then calculate the number of branches in the tree. A branch is a target, which is connected to at least two other targets. We perform an extensive comparison of 11 measures to see how well they correlate to human and computer performance. We evaluate the measures based on time complexity, prediction capability, suitability, and practicality. The results show that while the MST branches measure is simple, fast to compute, and does not need to have the optimal solution as a reference unlike many other measures. It correlates equally good or even better than the best of the previous measures ‑ the number of targets, and the number of targets on the convex hull.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信