用决策树解释信息物理系统

Swantje Plambeck, Görschwin Fey, Jakob Schyga, Johannes Hinckeldeyn, J. Kreutzfeldt
{"title":"用决策树解释信息物理系统","authors":"Swantje Plambeck, Görschwin Fey, Jakob Schyga, Johannes Hinckeldeyn, J. Kreutzfeldt","doi":"10.1109/caadcps56132.2022.00006","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.","PeriodicalId":321180,"journal":{"name":"2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS)","volume":"353 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explaining Cyber-Physical Systems Using Decision Trees\",\"authors\":\"Swantje Plambeck, Görschwin Fey, Jakob Schyga, Johannes Hinckeldeyn, J. Kreutzfeldt\",\"doi\":\"10.1109/caadcps56132.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.\",\"PeriodicalId\":321180,\"journal\":{\"name\":\"2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS)\",\"volume\":\"353 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/caadcps56132.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/caadcps56132.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信息物理系统(CPS)是包含数字嵌入式设备的系统,同时依赖于环境影响或外部配置。识别CPS的相关影响以及对外部影响的依赖性建模是困难的。我们建议将决策树与聚类相结合来学习这些依赖关系。该方法允许自动识别相关的影响,并接收涉及系统用例的系统行为的数据相关解释。我们的论文提出了一个实时定位系统(RTLS)的案例研究,证明了我们的方法的实用性,并讨论了学习决策树的进一步应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Cyber-Physical Systems Using Decision Trees
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信