使用强化学习对Web应用程序的自动化测试用例进行优先级排序:一种增强

Hoang-Gia Nguyen, Hoang-Dat Le, Vu Nguyen
{"title":"使用强化学习对Web应用程序的自动化测试用例进行优先级排序:一种增强","authors":"Hoang-Gia Nguyen, Hoang-Dat Le, Vu Nguyen","doi":"10.1109/KSE53942.2021.9648835","DOIUrl":null,"url":null,"abstract":"Test prioritization helps reduce the time needed to perform testing on the target application under test. It is even more critical when there are lots of tests to be tested within a short period. This paper presents a test prioritization method that enhances our previous method for prioritizing automated tests of Web-based applications using reinforcement learning. The main improvements are focused on the reward function of reinforcement learning and the graph merge-discount factor. We evaluate our method and other six recent test prioritization methods using eleven data sets. The results show that the proposed method outperforms the other methods on most data sets.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"478 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prioritizing automated test cases of Web applications using reinforcement learning: an enhancement\",\"authors\":\"Hoang-Gia Nguyen, Hoang-Dat Le, Vu Nguyen\",\"doi\":\"10.1109/KSE53942.2021.9648835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test prioritization helps reduce the time needed to perform testing on the target application under test. It is even more critical when there are lots of tests to be tested within a short period. This paper presents a test prioritization method that enhances our previous method for prioritizing automated tests of Web-based applications using reinforcement learning. The main improvements are focused on the reward function of reinforcement learning and the graph merge-discount factor. We evaluate our method and other six recent test prioritization methods using eleven data sets. The results show that the proposed method outperforms the other methods on most data sets.\",\"PeriodicalId\":130986,\"journal\":{\"name\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"478 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE53942.2021.9648835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

测试优先级有助于减少在被测目标应用程序上执行测试所需的时间。当在短时间内有大量测试需要测试时,这一点就更加重要了。本文提出了一种测试优先级方法,该方法增强了我们之前使用强化学习对基于web的应用程序的自动化测试进行优先级排序的方法。主要的改进集中在强化学习的奖励函数和图合并折扣因子上。我们使用11个数据集评估了我们的方法和其他六种最近的测试优先化方法。结果表明,该方法在大多数数据集上都优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritizing automated test cases of Web applications using reinforcement learning: an enhancement
Test prioritization helps reduce the time needed to perform testing on the target application under test. It is even more critical when there are lots of tests to be tested within a short period. This paper presents a test prioritization method that enhances our previous method for prioritizing automated tests of Web-based applications using reinforcement learning. The main improvements are focused on the reward function of reinforcement learning and the graph merge-discount factor. We evaluate our method and other six recent test prioritization methods using eleven data sets. The results show that the proposed method outperforms the other methods on most data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信