基于SSD的机场跑道异物碎片和小目标检测算法研究

Qiang Gao, Ruifeng Hong, Yutong Chen, Jiaxing Lei
{"title":"基于SSD的机场跑道异物碎片和小目标检测算法研究","authors":"Qiang Gao, Ruifeng Hong, Yutong Chen, Jiaxing Lei","doi":"10.1145/3448734.3450862","DOIUrl":null,"url":null,"abstract":"The SSD algorithm is currently a widely used target detection algorithm. In view of the small size of common foreign objects on airport runways and the low accuracy of SSD processing small target objects, this paper applies feature fusion method in SSD model to construct a new small target object detection algorithm model. The accuracy of the model is detected on the self-built airport runway foreign body data set, and the detection result mAP is 5% higher than the original SSD network.","PeriodicalId":105999,"journal":{"name":"The 2nd International Conference on Computing and Data Science","volume":"1217 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Detection Algorithm of Foreign Object Debris and Small Targets in Airport Runway Based on SSD\",\"authors\":\"Qiang Gao, Ruifeng Hong, Yutong Chen, Jiaxing Lei\",\"doi\":\"10.1145/3448734.3450862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SSD algorithm is currently a widely used target detection algorithm. In view of the small size of common foreign objects on airport runways and the low accuracy of SSD processing small target objects, this paper applies feature fusion method in SSD model to construct a new small target object detection algorithm model. The accuracy of the model is detected on the self-built airport runway foreign body data set, and the detection result mAP is 5% higher than the original SSD network.\",\"PeriodicalId\":105999,\"journal\":{\"name\":\"The 2nd International Conference on Computing and Data Science\",\"volume\":\"1217 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Computing and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448734.3450862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448734.3450862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

SSD算法是目前应用比较广泛的目标检测算法。针对机场跑道上常见异物体积小,SSD处理小目标物体精度低的问题,本文将SSD模型中的特征融合方法应用于小目标物体检测算法模型中,构建了新的小目标物体检测算法模型。在自建机场跑道异物数据集上检测模型的精度,检测结果mAP比原SSD网络提高5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Detection Algorithm of Foreign Object Debris and Small Targets in Airport Runway Based on SSD
The SSD algorithm is currently a widely used target detection algorithm. In view of the small size of common foreign objects on airport runways and the low accuracy of SSD processing small target objects, this paper applies feature fusion method in SSD model to construct a new small target object detection algorithm model. The accuracy of the model is detected on the self-built airport runway foreign body data set, and the detection result mAP is 5% higher than the original SSD network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信