分布式集合卡尔曼滤波

A. Shahid, Deniz Üstebay, M. Coates
{"title":"分布式集合卡尔曼滤波","authors":"A. Shahid, Deniz Üstebay, M. Coates","doi":"10.1109/SAM.2014.6882379","DOIUrl":null,"url":null,"abstract":"We address the problem of distributed filtering in a wireless sensor network and develop distributed approximations of three variants of the ensemble Kalman filter. We express the update equations in an alternative information form in order to formulate a distributed measurement update mechanism. The distributed filters use randomized gossip to reach consensus on the statistics needed to perform an update. Simulation results suggest that in the case of linear measurements and high-dimensional nonlinear measurements (with measurement model parameters known network-wide) with nonlinear state dynamics the proposed schemes achieve accuracy comparable to state-of-the-art distributed filters while significantly reducing the communication overhead.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed ensemble Kalman filtering\",\"authors\":\"A. Shahid, Deniz Üstebay, M. Coates\",\"doi\":\"10.1109/SAM.2014.6882379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of distributed filtering in a wireless sensor network and develop distributed approximations of three variants of the ensemble Kalman filter. We express the update equations in an alternative information form in order to formulate a distributed measurement update mechanism. The distributed filters use randomized gossip to reach consensus on the statistics needed to perform an update. Simulation results suggest that in the case of linear measurements and high-dimensional nonlinear measurements (with measurement model parameters known network-wide) with nonlinear state dynamics the proposed schemes achieve accuracy comparable to state-of-the-art distributed filters while significantly reducing the communication overhead.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们解决了无线传感器网络中的分布式滤波问题,并开发了集成卡尔曼滤波器的三种变体的分布式逼近。为了建立一种分布式的测量更新机制,我们将更新方程用替代信息形式表示。分布式过滤器使用随机闲谈来就执行更新所需的统计信息达成共识。仿真结果表明,在非线性状态动态的线性测量和高维非线性测量(测量模型参数在网络范围内已知)的情况下,所提出的方案可以达到与最先进的分布式滤波器相当的精度,同时显着降低了通信开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed ensemble Kalman filtering
We address the problem of distributed filtering in a wireless sensor network and develop distributed approximations of three variants of the ensemble Kalman filter. We express the update equations in an alternative information form in order to formulate a distributed measurement update mechanism. The distributed filters use randomized gossip to reach consensus on the statistics needed to perform an update. Simulation results suggest that in the case of linear measurements and high-dimensional nonlinear measurements (with measurement model parameters known network-wide) with nonlinear state dynamics the proposed schemes achieve accuracy comparable to state-of-the-art distributed filters while significantly reducing the communication overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信