{"title":"fpga的浮点DSP块结构","authors":"M. Langhammer, B. Pasca","doi":"10.1145/2684746.2689071","DOIUrl":null,"url":null,"abstract":"This work describes the architecture of a new FPGA DSP block supporting both fixed and floating point arithmetic. Each DSP block can be configured to provide one single precision IEEE-754 floating multiplier and one IEEE-754 floating point adder, or when configured in fixed point mode, the block is completely backwards compatible with current FPGA DSP blocks. The DSP block operating frequency is similar in both modes, in the region of 500MHz, offering up to 2 GMACs fixed point and 1 GFLOPs performance per block. In floating point mode, support for multi-block vector modes are provided, where multiple blocks can be seamlessly assembled into any size real or complex dot products. By efficient reuse of the fixed point arithmetic modules, as well as the fixed point routing, the floating point features have only minimal power and area impact. We show how these blocks are implemented in a modern Arria 10 FPGA family, offering over 1 TFLOPs using only embedded structures, and how scaling to multiple TFLOPs densities is possible for planned devices.","PeriodicalId":388546,"journal":{"name":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Floating-Point DSP Block Architecture for FPGAs\",\"authors\":\"M. Langhammer, B. Pasca\",\"doi\":\"10.1145/2684746.2689071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the architecture of a new FPGA DSP block supporting both fixed and floating point arithmetic. Each DSP block can be configured to provide one single precision IEEE-754 floating multiplier and one IEEE-754 floating point adder, or when configured in fixed point mode, the block is completely backwards compatible with current FPGA DSP blocks. The DSP block operating frequency is similar in both modes, in the region of 500MHz, offering up to 2 GMACs fixed point and 1 GFLOPs performance per block. In floating point mode, support for multi-block vector modes are provided, where multiple blocks can be seamlessly assembled into any size real or complex dot products. By efficient reuse of the fixed point arithmetic modules, as well as the fixed point routing, the floating point features have only minimal power and area impact. We show how these blocks are implemented in a modern Arria 10 FPGA family, offering over 1 TFLOPs using only embedded structures, and how scaling to multiple TFLOPs densities is possible for planned devices.\",\"PeriodicalId\":388546,\"journal\":{\"name\":\"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"372 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2684746.2689071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684746.2689071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work describes the architecture of a new FPGA DSP block supporting both fixed and floating point arithmetic. Each DSP block can be configured to provide one single precision IEEE-754 floating multiplier and one IEEE-754 floating point adder, or when configured in fixed point mode, the block is completely backwards compatible with current FPGA DSP blocks. The DSP block operating frequency is similar in both modes, in the region of 500MHz, offering up to 2 GMACs fixed point and 1 GFLOPs performance per block. In floating point mode, support for multi-block vector modes are provided, where multiple blocks can be seamlessly assembled into any size real or complex dot products. By efficient reuse of the fixed point arithmetic modules, as well as the fixed point routing, the floating point features have only minimal power and area impact. We show how these blocks are implemented in a modern Arria 10 FPGA family, offering over 1 TFLOPs using only embedded structures, and how scaling to multiple TFLOPs densities is possible for planned devices.