基于adaboost算法的级联分类器前向碰撞预警系统车辆检测

Yeong-Kang Lai, Yu-Hsi Chou, Thomas Schumann
{"title":"基于adaboost算法的级联分类器前向碰撞预警系统车辆检测","authors":"Yeong-Kang Lai, Yu-Hsi Chou, Thomas Schumann","doi":"10.1109/ICCE-Berlin.2017.8210585","DOIUrl":null,"url":null,"abstract":"This paper proposed a monocular vehicle detection for forward collision warning system. We use the active-learning framework to train a cascade classifier and use a two steps vehicle detection. We used five test data to quantify our detection performance, analyzing the two-stage vehicle detection improvement, and the overall detection rate and the false detection rate. In a good light condition, the detection rate and the false detection rate can achieve 0.967 and 0.122, respectively. Our system can achieve up to 45 frames per second on Intel core Ì7-6700 CPU.","PeriodicalId":355536,"journal":{"name":"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","volume":"39 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Vehicle detection for forward collision warning system based on a cascade classifier using adaboost algorithm\",\"authors\":\"Yeong-Kang Lai, Yu-Hsi Chou, Thomas Schumann\",\"doi\":\"10.1109/ICCE-Berlin.2017.8210585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a monocular vehicle detection for forward collision warning system. We use the active-learning framework to train a cascade classifier and use a two steps vehicle detection. We used five test data to quantify our detection performance, analyzing the two-stage vehicle detection improvement, and the overall detection rate and the false detection rate. In a good light condition, the detection rate and the false detection rate can achieve 0.967 and 0.122, respectively. Our system can achieve up to 45 frames per second on Intel core Ì7-6700 CPU.\",\"PeriodicalId\":355536,\"journal\":{\"name\":\"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)\",\"volume\":\"39 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Berlin.2017.8210585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Berlin.2017.8210585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种用于前方碰撞预警系统的单目车辆检测方法。我们使用主动学习框架来训练级联分类器,并使用两步车辆检测。我们使用五个测试数据来量化我们的检测性能,分析两阶段车辆检测的改进,以及整体检测率和误检率。在良好的光照条件下,检测率和误检率可分别达到0.967和0.122。我们的系统可以在Intel core Ì7-6700 CPU上达到每秒45帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle detection for forward collision warning system based on a cascade classifier using adaboost algorithm
This paper proposed a monocular vehicle detection for forward collision warning system. We use the active-learning framework to train a cascade classifier and use a two steps vehicle detection. We used five test data to quantify our detection performance, analyzing the two-stage vehicle detection improvement, and the overall detection rate and the false detection rate. In a good light condition, the detection rate and the false detection rate can achieve 0.967 and 0.122, respectively. Our system can achieve up to 45 frames per second on Intel core Ì7-6700 CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信