基于AUC度量的序列前向特征选择红外小目标识别

Sungho Kim, Kyung-Tae Kim, So-Hyun Kim
{"title":"基于AUC度量的序列前向特征选择红外小目标识别","authors":"Sungho Kim, Kyung-Tae Kim, So-Hyun Kim","doi":"10.1109/ICIT.2014.6895005","DOIUrl":null,"url":null,"abstract":"Infrared search and track (IRST) is an important research topic in military applications in surveillance and precise guided missiles. The bottleneck of IRST algorithm is huge number of false alarms in real world applications due to sky cloud, sea-glints, and ground clutters. This paper presents a novel target discrimination method using forward feature selection with area under ROC curve (AUC) metric. Experimental results on real target sequences validate the feasibility of the proposed method.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"103 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Infrared small target discrimination using sequential forward feature selection with AUC mettric\",\"authors\":\"Sungho Kim, Kyung-Tae Kim, So-Hyun Kim\",\"doi\":\"10.1109/ICIT.2014.6895005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared search and track (IRST) is an important research topic in military applications in surveillance and precise guided missiles. The bottleneck of IRST algorithm is huge number of false alarms in real world applications due to sky cloud, sea-glints, and ground clutters. This paper presents a novel target discrimination method using forward feature selection with area under ROC curve (AUC) metric. Experimental results on real target sequences validate the feasibility of the proposed method.\",\"PeriodicalId\":240337,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"103 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.6895005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6895005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

红外搜索与跟踪(IRST)是侦察和精确制导导弹军事应用中的一个重要研究课题。IRST算法的瓶颈是在现实应用中由于天空云、海面闪烁和地面杂波而产生的大量假警报。提出了一种基于AUC (area under ROC curve)度量的前向特征选择目标识别方法。在真实目标序列上的实验结果验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared small target discrimination using sequential forward feature selection with AUC mettric
Infrared search and track (IRST) is an important research topic in military applications in surveillance and precise guided missiles. The bottleneck of IRST algorithm is huge number of false alarms in real world applications due to sky cloud, sea-glints, and ground clutters. This paper presents a novel target discrimination method using forward feature selection with area under ROC curve (AUC) metric. Experimental results on real target sequences validate the feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信