堆排序的最大似然分析

Ulrich Laube, M. Nebel
{"title":"堆排序的最大似然分析","authors":"Ulrich Laube, M. Nebel","doi":"10.1137/1.9781611972993.7","DOIUrl":null,"url":null,"abstract":"We present a new approach for an average-cases analysis of algorithms that supports a non-uniform distribution of the inputs and is based on the maximum likelihood training of stochastic grammars. The approach is exemplified by an analysis of the average running time of heapsort. All but one step of our analysis can be automated on top of a computer-algebra system. Thus our new approach eases the effort required for an average-case analysis exceptionally allowing for the consideration of realistic input distributions with unknown distribution functions at the same time.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Analysis of Heapsort\",\"authors\":\"Ulrich Laube, M. Nebel\",\"doi\":\"10.1137/1.9781611972993.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach for an average-cases analysis of algorithms that supports a non-uniform distribution of the inputs and is based on the maximum likelihood training of stochastic grammars. The approach is exemplified by an analysis of the average running time of heapsort. All but one step of our analysis can be automated on top of a computer-algebra system. Thus our new approach eases the effort required for an average-case analysis exceptionally allowing for the consideration of realistic input distributions with unknown distribution functions at the same time.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"1007 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972993.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972993.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的算法的平均情况分析方法,该方法支持输入的非均匀分布,并基于随机语法的最大似然训练。通过对堆排序的平均运行时间的分析来举例说明这种方法。除了一个步骤之外,我们的所有分析都可以在计算机代数系统上自动化。因此,我们的新方法减轻了平均情况分析所需的工作量,同时允许考虑具有未知分布函数的实际输入分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Analysis of Heapsort
We present a new approach for an average-cases analysis of algorithms that supports a non-uniform distribution of the inputs and is based on the maximum likelihood training of stochastic grammars. The approach is exemplified by an analysis of the average running time of heapsort. All but one step of our analysis can be automated on top of a computer-algebra system. Thus our new approach eases the effort required for an average-case analysis exceptionally allowing for the consideration of realistic input distributions with unknown distribution functions at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信