基于语义概念融合的生活日志检索

Thanh-Dat Truong, Tung Dinh Duy, Vinh-Tiep Nguyen, M. Tran
{"title":"基于语义概念融合的生活日志检索","authors":"Thanh-Dat Truong, Tung Dinh Duy, Vinh-Tiep Nguyen, M. Tran","doi":"10.1145/3210539.3210545","DOIUrl":null,"url":null,"abstract":"Lifelogging data provides useful insight understanding about our lives during daily activities. Thus, it is essential to develop a system to assist users to retrieve events or memories from lifelogging data from ad-hoc text queries. In this paper, we first propose a method to process lifelogging data by grouping images into visual shots and clusters, then extract semantic concepts on scene category and attributes, entities, and actions. We then develop a query system that supports 4 main types of query conditions: temporal, spatial, entity and action, and extra data criteria. Our system is expected to efficiently assist users to search for past moments in daily logs.","PeriodicalId":276500,"journal":{"name":"Proceedings of the 2018 ACM Workshop on The Lifelog Search Challenge","volume":"40 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Lifelogging Retrieval based on Semantic Concepts Fusion\",\"authors\":\"Thanh-Dat Truong, Tung Dinh Duy, Vinh-Tiep Nguyen, M. Tran\",\"doi\":\"10.1145/3210539.3210545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lifelogging data provides useful insight understanding about our lives during daily activities. Thus, it is essential to develop a system to assist users to retrieve events or memories from lifelogging data from ad-hoc text queries. In this paper, we first propose a method to process lifelogging data by grouping images into visual shots and clusters, then extract semantic concepts on scene category and attributes, entities, and actions. We then develop a query system that supports 4 main types of query conditions: temporal, spatial, entity and action, and extra data criteria. Our system is expected to efficiently assist users to search for past moments in daily logs.\",\"PeriodicalId\":276500,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Workshop on The Lifelog Search Challenge\",\"volume\":\"40 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Workshop on The Lifelog Search Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210539.3210545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Workshop on The Lifelog Search Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210539.3210545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

生活记录数据在日常活动中为我们的生活提供了有用的洞察力。因此,开发一个系统来帮助用户从特定文本查询的生活日志数据中检索事件或记忆是至关重要的。在本文中,我们首先提出了一种通过将图像分组为视觉镜头和聚类来处理生活日志数据的方法,然后提取场景类别和属性、实体和动作的语义概念。然后我们开发了一个查询系统,它支持4种主要类型的查询条件:时间、空间、实体和动作,以及额外的数据标准。我们的系统有望有效地帮助用户在日常日志中搜索过去的时刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifelogging Retrieval based on Semantic Concepts Fusion
Lifelogging data provides useful insight understanding about our lives during daily activities. Thus, it is essential to develop a system to assist users to retrieve events or memories from lifelogging data from ad-hoc text queries. In this paper, we first propose a method to process lifelogging data by grouping images into visual shots and clusters, then extract semantic concepts on scene category and attributes, entities, and actions. We then develop a query system that supports 4 main types of query conditions: temporal, spatial, entity and action, and extra data criteria. Our system is expected to efficiently assist users to search for past moments in daily logs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信