基于积分不等式的不确定时滞系统指数稳定性新准则

A. Xue, Yun Chen, Renquan Lu, Junhong Wang
{"title":"基于积分不等式的不确定时滞系统指数稳定性新准则","authors":"A. Xue, Yun Chen, Renquan Lu, Junhong Wang","doi":"10.1109/ICIEA.2007.4318944","DOIUrl":null,"url":null,"abstract":"The delay-dependent exponential stability for uncertain time-delay systems is investigated based on two new integral inequalities in this paper. The uncertainties in system matrices are assumed to be norm-bounded. In terms of linear matrix inequalities (LMIs), newly sufficient stability conditions without involving model transformation and bounding techniques for cross terms are proposed. Two numerical examples are provided to show the effectiveness of our methods.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"28 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Exponential Stability Criteria for Uncertain Time-Delay Systems Based on Integral Inequalities\",\"authors\":\"A. Xue, Yun Chen, Renquan Lu, Junhong Wang\",\"doi\":\"10.1109/ICIEA.2007.4318944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The delay-dependent exponential stability for uncertain time-delay systems is investigated based on two new integral inequalities in this paper. The uncertainties in system matrices are assumed to be norm-bounded. In terms of linear matrix inequalities (LMIs), newly sufficient stability conditions without involving model transformation and bounding techniques for cross terms are proposed. Two numerical examples are provided to show the effectiveness of our methods.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"28 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于两个新的积分不等式,研究了不确定时滞系统的时滞相关指数稳定性问题。假设系统矩阵中的不确定性是范数有界的。针对线性矩阵不等式,提出了不涉及模型变换和交叉项边界技术的新的充分稳定性条件。最后给出了两个数值算例,说明了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Exponential Stability Criteria for Uncertain Time-Delay Systems Based on Integral Inequalities
The delay-dependent exponential stability for uncertain time-delay systems is investigated based on two new integral inequalities in this paper. The uncertainties in system matrices are assumed to be norm-bounded. In terms of linear matrix inequalities (LMIs), newly sufficient stability conditions without involving model transformation and bounding techniques for cross terms are proposed. Two numerical examples are provided to show the effectiveness of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信