基于多元student-t分布的非线性系统递归离群鲁棒滤波与平滑

R. Piché, S. Särkkä, Jouni Hartikainen
{"title":"基于多元student-t分布的非线性系统递归离群鲁棒滤波与平滑","authors":"R. Piché, S. Särkkä, Jouni Hartikainen","doi":"10.1109/MLSP.2012.6349794","DOIUrl":null,"url":null,"abstract":"Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"59 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution\",\"authors\":\"R. Piché, S. Särkkä, Jouni Hartikainen\",\"doi\":\"10.1109/MLSP.2012.6349794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"59 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

摘要

针对具有多元Student’st分布测量噪声的非线性离散状态空间模型,提出了非线性卡尔曼滤波和Rauch-Tung-Striebel光滑型递推估计。该方法使用变分贝叶斯方法逼近每个时间步的后验状态。动态和测量模型中的非线性使用非线性高斯滤波和平滑方法处理,其中包含许多已知的非线性卡尔曼型滤波器。在计算机仿真中,将该方法与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信