{"title":"基于多元student-t分布的非线性系统递归离群鲁棒滤波与平滑","authors":"R. Piché, S. Särkkä, Jouni Hartikainen","doi":"10.1109/MLSP.2012.6349794","DOIUrl":null,"url":null,"abstract":"Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"59 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution\",\"authors\":\"R. Piché, S. Särkkä, Jouni Hartikainen\",\"doi\":\"10.1109/MLSP.2012.6349794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"59 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.