基于关联规则挖掘算法的景区智能推荐方案

Yang Xi, Qihong Yuan
{"title":"基于关联规则挖掘算法的景区智能推荐方案","authors":"Yang Xi, Qihong Yuan","doi":"10.1109/ICRIS.2017.53","DOIUrl":null,"url":null,"abstract":"This paper analyzes the development status of intelligent tourist guide system and studies Apriori-based association rule algorithm with corresponding improvement. Then this paper puts forward a weighted association rule algorithm. The algorithm comprehensively takes in to account nature, behavior and situation of tourists, to put forward three aspects of improvement in defects of efficiency and accuracy according to Apriori algorithm and it further establishes the improved tourists' behavior-preference model. On this basis, we construct personalized tourists' area recommendation model, and analyzes the instance data with data mining, to verify the accuracy in recommending framework, achieving more effective personalized scenic spot recommendation strategy.","PeriodicalId":443064,"journal":{"name":"2017 International Conference on Robots & Intelligent System (ICRIS)","volume":"27 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intelligent Recommendation Scheme of Scenic Spots Based on Association Rule Mining Algorithm\",\"authors\":\"Yang Xi, Qihong Yuan\",\"doi\":\"10.1109/ICRIS.2017.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the development status of intelligent tourist guide system and studies Apriori-based association rule algorithm with corresponding improvement. Then this paper puts forward a weighted association rule algorithm. The algorithm comprehensively takes in to account nature, behavior and situation of tourists, to put forward three aspects of improvement in defects of efficiency and accuracy according to Apriori algorithm and it further establishes the improved tourists' behavior-preference model. On this basis, we construct personalized tourists' area recommendation model, and analyzes the instance data with data mining, to verify the accuracy in recommending framework, achieving more effective personalized scenic spot recommendation strategy.\",\"PeriodicalId\":443064,\"journal\":{\"name\":\"2017 International Conference on Robots & Intelligent System (ICRIS)\",\"volume\":\"27 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Robots & Intelligent System (ICRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRIS.2017.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Robots & Intelligent System (ICRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIS.2017.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分析了智能导游系统的发展现状,研究了基于apriori的关联规则算法,并对其进行了改进。然后提出了一种加权关联规则算法。该算法综合考虑了游客的性质、行为和情况,针对Apriori算法在效率和准确性上的缺陷提出了三个方面的改进,并进一步建立了改进后的游客行为偏好模型。在此基础上,构建个性化景区推荐模型,并对实例数据进行数据挖掘分析,验证推荐框架的准确性,实现更有效的个性化景区推荐策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Recommendation Scheme of Scenic Spots Based on Association Rule Mining Algorithm
This paper analyzes the development status of intelligent tourist guide system and studies Apriori-based association rule algorithm with corresponding improvement. Then this paper puts forward a weighted association rule algorithm. The algorithm comprehensively takes in to account nature, behavior and situation of tourists, to put forward three aspects of improvement in defects of efficiency and accuracy according to Apriori algorithm and it further establishes the improved tourists' behavior-preference model. On this basis, we construct personalized tourists' area recommendation model, and analyzes the instance data with data mining, to verify the accuracy in recommending framework, achieving more effective personalized scenic spot recommendation strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信