causallearn:使用fpga的基于可扩展流的因果贝叶斯学习的自动化框架

B. Rouhani, M. Ghasemzadeh, F. Koushanfar
{"title":"causallearn:使用fpga的基于可扩展流的因果贝叶斯学习的自动化框架","authors":"B. Rouhani, M. Ghasemzadeh, F. Koushanfar","doi":"10.1145/3174243.3174259","DOIUrl":null,"url":null,"abstract":"This paper proposes CausaLearn, the first automated framework that enables real-time and scalable approximation of Probability Density Function (PDF) in the context of causal Bayesian graphical models. CausaLearn targets complex streaming scenarios in which the input data evolves over time and independence cannot be assumed between data samples (e.g., continuous time-varying data analysis). Our framework is devised using a HW/SW co-design approach. We provide the first implementation of Hamiltonian Markov Chain Monte Carlo on FPGA that can efficiently sample from the steady state probability distribution at scales while considering the correlation between the observed data. CausaLearn is customizable to the limits of the underlying resource provisioning in order to maximize the effective system throughput. It uses physical profiling to abstract high-level hardware characteristics. These characteristics are integrated into our automated customization unit in order to tile, schedule, and batch the PDF approximation workload corresponding to the pertinent platform resources and constraints. We benchmark the design performance for analyzing various massive time-series data on three FPGA platforms with different computational budgets. Our extensive evaluations demonstrate up to two orders-of-magnitude runtime and energy improvements compared to the best-known prior solution. We provide an accompanying API that can be leveraged by data scientists and practitioners to automate and abstract hardware design optimization.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CausaLearn: Automated Framework for Scalable Streaming-based Causal Bayesian Learning using FPGAs\",\"authors\":\"B. Rouhani, M. Ghasemzadeh, F. Koushanfar\",\"doi\":\"10.1145/3174243.3174259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes CausaLearn, the first automated framework that enables real-time and scalable approximation of Probability Density Function (PDF) in the context of causal Bayesian graphical models. CausaLearn targets complex streaming scenarios in which the input data evolves over time and independence cannot be assumed between data samples (e.g., continuous time-varying data analysis). Our framework is devised using a HW/SW co-design approach. We provide the first implementation of Hamiltonian Markov Chain Monte Carlo on FPGA that can efficiently sample from the steady state probability distribution at scales while considering the correlation between the observed data. CausaLearn is customizable to the limits of the underlying resource provisioning in order to maximize the effective system throughput. It uses physical profiling to abstract high-level hardware characteristics. These characteristics are integrated into our automated customization unit in order to tile, schedule, and batch the PDF approximation workload corresponding to the pertinent platform resources and constraints. We benchmark the design performance for analyzing various massive time-series data on three FPGA platforms with different computational budgets. Our extensive evaluations demonstrate up to two orders-of-magnitude runtime and energy improvements compared to the best-known prior solution. We provide an accompanying API that can be leveraged by data scientists and practitioners to automate and abstract hardware design optimization.\",\"PeriodicalId\":164936,\"journal\":{\"name\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3174243.3174259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了causallearn,这是第一个自动化框架,可以在因果贝叶斯图形模型的背景下实时和可扩展地逼近概率密度函数(PDF)。causallearn的目标是复杂的流场景,在这些场景中,输入数据随着时间的推移而演变,并且不能假设数据样本之间的独立性(例如,连续时变数据分析)。我们的框架是使用硬件/软件协同设计方法设计的。我们提供了第一个在FPGA上实现的哈密顿马尔可夫链蒙特卡罗,它可以有效地从尺度上的稳态概率分布中采样,同时考虑到观测数据之间的相关性。causallearn可以根据底层资源配置的限制进行定制,以便最大化有效的系统吞吐量。它使用物理剖析来抽象高级硬件特征。这些特征被集成到我们的自动化定制单元中,以便根据相关的平台资源和约束对PDF近似工作负载进行平排、调度和批处理。我们对设计性能进行了基准测试,以分析不同计算预算的三种FPGA平台上的各种大规模时间序列数据。我们的广泛评估表明,与最知名的先前解决方案相比,该解决方案的运行时间和能耗提高了两个数量级。我们提供了一个附带的API,数据科学家和从业者可以利用它来自动化和抽象硬件设计优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CausaLearn: Automated Framework for Scalable Streaming-based Causal Bayesian Learning using FPGAs
This paper proposes CausaLearn, the first automated framework that enables real-time and scalable approximation of Probability Density Function (PDF) in the context of causal Bayesian graphical models. CausaLearn targets complex streaming scenarios in which the input data evolves over time and independence cannot be assumed between data samples (e.g., continuous time-varying data analysis). Our framework is devised using a HW/SW co-design approach. We provide the first implementation of Hamiltonian Markov Chain Monte Carlo on FPGA that can efficiently sample from the steady state probability distribution at scales while considering the correlation between the observed data. CausaLearn is customizable to the limits of the underlying resource provisioning in order to maximize the effective system throughput. It uses physical profiling to abstract high-level hardware characteristics. These characteristics are integrated into our automated customization unit in order to tile, schedule, and batch the PDF approximation workload corresponding to the pertinent platform resources and constraints. We benchmark the design performance for analyzing various massive time-series data on three FPGA platforms with different computational budgets. Our extensive evaluations demonstrate up to two orders-of-magnitude runtime and energy improvements compared to the best-known prior solution. We provide an accompanying API that can be leveraged by data scientists and practitioners to automate and abstract hardware design optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信