Hebbian/anti-Hebbian网络的PCA和美白优化理论

C. Pehlevan, D. Chklovskii
{"title":"Hebbian/anti-Hebbian网络的PCA和美白优化理论","authors":"C. Pehlevan, D. Chklovskii","doi":"10.1109/ALLERTON.2015.7447180","DOIUrl":null,"url":null,"abstract":"In analyzing information streamed by sensory organs, our brains face challenges similar to those solved in statistical signal processing. This suggests that biologically plausible implementations of online signal processing algorithms may model neural computation. Here, we focus on such workhorses of signal processing as Principal Component Analysis (PCA) and whitening which maximize information transmission in the presence of noise. We adopt the similarity matching framework, recently developed for principal subspace extraction, but modify the existing objective functions by adding a decorrelating term. From the modified objective functions, we derive online PCA and whitening algorithms which are implementable by neural networks with local learning rules, i.e. synaptic weight updates that depend on the activity of only pre- and postsynaptic neurons. Our theory offers a principled model of neural computations and makes testable predictions such as the dropout of underutilized neurons.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"24 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimization theory of Hebbian/anti-Hebbian networks for PCA and whitening\",\"authors\":\"C. Pehlevan, D. Chklovskii\",\"doi\":\"10.1109/ALLERTON.2015.7447180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In analyzing information streamed by sensory organs, our brains face challenges similar to those solved in statistical signal processing. This suggests that biologically plausible implementations of online signal processing algorithms may model neural computation. Here, we focus on such workhorses of signal processing as Principal Component Analysis (PCA) and whitening which maximize information transmission in the presence of noise. We adopt the similarity matching framework, recently developed for principal subspace extraction, but modify the existing objective functions by adding a decorrelating term. From the modified objective functions, we derive online PCA and whitening algorithms which are implementable by neural networks with local learning rules, i.e. synaptic weight updates that depend on the activity of only pre- and postsynaptic neurons. Our theory offers a principled model of neural computations and makes testable predictions such as the dropout of underutilized neurons.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"24 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在分析由感觉器官传输的信息时,我们的大脑面临着与统计信号处理类似的挑战。这表明在线信号处理算法的生物学上可行的实现可以模拟神经计算。在这里,我们重点研究了信号处理中的主成分分析(PCA)和白化等方法,它们在存在噪声的情况下最大限度地提高了信息的传输。我们采用最近开发的用于主子空间提取的相似度匹配框架,但通过添加解相关项对现有目标函数进行了修改。根据改进的目标函数,我们推导出在线PCA和白化算法,这些算法可以通过具有局部学习规则的神经网络实现,即仅依赖于突触前和突触后神经元活动的突触权更新。我们的理论提供了一个原则性的神经计算模型,并做出了可测试的预测,例如未充分利用的神经元的丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization theory of Hebbian/anti-Hebbian networks for PCA and whitening
In analyzing information streamed by sensory organs, our brains face challenges similar to those solved in statistical signal processing. This suggests that biologically plausible implementations of online signal processing algorithms may model neural computation. Here, we focus on such workhorses of signal processing as Principal Component Analysis (PCA) and whitening which maximize information transmission in the presence of noise. We adopt the similarity matching framework, recently developed for principal subspace extraction, but modify the existing objective functions by adding a decorrelating term. From the modified objective functions, we derive online PCA and whitening algorithms which are implementable by neural networks with local learning rules, i.e. synaptic weight updates that depend on the activity of only pre- and postsynaptic neurons. Our theory offers a principled model of neural computations and makes testable predictions such as the dropout of underutilized neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信