基于大规模强化学习的并行增强随机搜索在电力系统中的应用

Himanshu Sharma, Joshua D. Suetterlein, Sumathi Lakshmiranganatha, T. Flynn, D. Vrabie, Christine M. Sweeney, V. Ramakrishniah
{"title":"基于大规模强化学习的并行增强随机搜索在电力系统中的应用","authors":"Himanshu Sharma, Joshua D. Suetterlein, Sumathi Lakshmiranganatha, T. Flynn, D. Vrabie, Christine M. Sweeney, V. Ramakrishniah","doi":"10.1145/3599733.3600261","DOIUrl":null,"url":null,"abstract":"With recent advances in deep learning and large-scale computing, learning-based controls have become increasingly attractive for complex physical systems. Consequently, developing generalized learning-based control software that takes into account the next generation of computing architectures is paramount. Specifically, for the case of complex control, we present the Easily eXtendable Architecture for Reinforcement Learning (EXARL), which aims to support various scientific applications seeking to leverage reinforcement learning (RL) on exascale computing architectures. We demonstrate the efficacy and performance of the EXARL library for the scientific use case of designing a complex control policy to stabilize a power system after experiencing a fault. We use a parallel augmented random search method developed within EXARL and present its preliminary validation and performance stabilization of a fault for the IEEE 39-bus system.","PeriodicalId":114998,"journal":{"name":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXARL-PARS: Parallel Augmented Random Search Using Reinforcement Learning at Scale for Applications in Power Systems\",\"authors\":\"Himanshu Sharma, Joshua D. Suetterlein, Sumathi Lakshmiranganatha, T. Flynn, D. Vrabie, Christine M. Sweeney, V. Ramakrishniah\",\"doi\":\"10.1145/3599733.3600261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent advances in deep learning and large-scale computing, learning-based controls have become increasingly attractive for complex physical systems. Consequently, developing generalized learning-based control software that takes into account the next generation of computing architectures is paramount. Specifically, for the case of complex control, we present the Easily eXtendable Architecture for Reinforcement Learning (EXARL), which aims to support various scientific applications seeking to leverage reinforcement learning (RL) on exascale computing architectures. We demonstrate the efficacy and performance of the EXARL library for the scientific use case of designing a complex control policy to stabilize a power system after experiencing a fault. We use a parallel augmented random search method developed within EXARL and present its preliminary validation and performance stabilization of a fault for the IEEE 39-bus system.\",\"PeriodicalId\":114998,\"journal\":{\"name\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3599733.3600261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599733.3600261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习和大规模计算的最新进展,基于学习的控制对复杂的物理系统变得越来越有吸引力。因此,开发考虑到下一代计算架构的基于学习的通用控制软件是至关重要的。具体来说,对于复杂控制的情况,我们提出了易于扩展的强化学习架构(EXARL),旨在支持寻求在百亿亿次计算架构上利用强化学习(RL)的各种科学应用。我们展示了EXARL库在设计复杂控制策略以稳定电力系统故障后的科学用例中的有效性和性能。我们使用在EXARL中开发的并行增强随机搜索方法,并提出了其对IEEE 39总线系统故障的初步验证和性能稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXARL-PARS: Parallel Augmented Random Search Using Reinforcement Learning at Scale for Applications in Power Systems
With recent advances in deep learning and large-scale computing, learning-based controls have become increasingly attractive for complex physical systems. Consequently, developing generalized learning-based control software that takes into account the next generation of computing architectures is paramount. Specifically, for the case of complex control, we present the Easily eXtendable Architecture for Reinforcement Learning (EXARL), which aims to support various scientific applications seeking to leverage reinforcement learning (RL) on exascale computing architectures. We demonstrate the efficacy and performance of the EXARL library for the scientific use case of designing a complex control policy to stabilize a power system after experiencing a fault. We use a parallel augmented random search method developed within EXARL and present its preliminary validation and performance stabilization of a fault for the IEEE 39-bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信