杨-米尔斯振幅散射形式的性质

L. Cruz, Alexander Kniss, S. Weinzierl
{"title":"杨-米尔斯振幅散射形式的性质","authors":"L. Cruz, Alexander Kniss, S. Weinzierl","doi":"10.22323/1.303.0078","DOIUrl":null,"url":null,"abstract":"In this talk we introduce the properties of scattering forms on the compactified moduli space of Riemann spheres with $n$ marked points. These differential forms are $\\text{PSL}(2,\\mathbb{C})$ invariant, their intersection numbers correspond to scattering amplitudes as recently proposed by Mizera. All singularities are at the boundary of the moduli space and each singularity is logarithmic. In addition, each \nresidue factorizes into two differential forms of lower points.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"163 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of scattering forms for Yang-Mills amplitudes\",\"authors\":\"L. Cruz, Alexander Kniss, S. Weinzierl\",\"doi\":\"10.22323/1.303.0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk we introduce the properties of scattering forms on the compactified moduli space of Riemann spheres with $n$ marked points. These differential forms are $\\\\text{PSL}(2,\\\\mathbb{C})$ invariant, their intersection numbers correspond to scattering amplitudes as recently proposed by Mizera. All singularities are at the boundary of the moduli space and each singularity is logarithmic. In addition, each \\nresidue factorizes into two differential forms of lower points.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"163 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有n个标记点的黎曼球紧化模空间上散射形式的性质。这些微分形式是$\text{PSL}(2,\mathbb{C})$不变的,它们的交点数对应于最近由Mizera提出的散射振幅。所有的奇点都在模空间的边界上,并且每个奇点都是对数的。此外,每个残差被分解成两种不同形式的最低点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of scattering forms for Yang-Mills amplitudes
In this talk we introduce the properties of scattering forms on the compactified moduli space of Riemann spheres with $n$ marked points. These differential forms are $\text{PSL}(2,\mathbb{C})$ invariant, their intersection numbers correspond to scattering amplitudes as recently proposed by Mizera. All singularities are at the boundary of the moduli space and each singularity is logarithmic. In addition, each residue factorizes into two differential forms of lower points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信